1
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
Tóth A, Fodor K, Praznovszky T, Tubak V, Udvardy A, Hadlaczky G, Katona RL. Novel method to load multiple genes onto a mammalian artificial chromosome. PLoS One 2014; 9:e85565. [PMID: 24454889 PMCID: PMC3893256 DOI: 10.1371/journal.pone.0085565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.
Collapse
Affiliation(s)
- Anna Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Fodor
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tünde Praznovszky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vilmos Tubak
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Hadlaczky
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Robert L. Katona
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
3
|
Katona RL, Vanderbyl SL, Perez CF. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. Methods Mol Biol 2011; 738:199-216. [PMID: 21431729 DOI: 10.1007/978-1-61779-099-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Modifying multipotent, self-renewing human stem cells with mammalian artificial chromosomes (MACs), present a promising clinical strategy for numerous diseases, especially ex vivo cell therapies that can benefit from constitutive or overexpression of therapeutic gene(s). MACs are nonintegrating, autonomously replicating, with the capacity to carry large cDNA or genomic sequences, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression, and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in progenitor cells. The status quo is that the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells. We will describe the progress of MAC technologies, the subsequent modifications of stem cells, and discuss the establishment of MAC platform stem cell lines to facilitate proof-of-principle studies and preclinical development.
Collapse
Affiliation(s)
- Robert L Katona
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
4
|
Lin NJ, Zhu J. Interleukin-24 selectively induces growth suppression and apoptosis in human gastric cancer cells transfected with a single tetracycline-regulatable plasmid. Shijie Huaren Xiaohua Zazhi 2006; 14:1956-1962. [DOI: 10.11569/wcjd.v14.i20.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To estimate the tumor-suppressive activity of interleukin-24 (IL-24) in gastric cancer cells in vitro and the regulation of tetracycline in a single plasmid pCEP4-tetR-IL-24.
METHODS: A single plasmid pCEP4-tetR-IL-24 was constructed which contained the TetR and TetO. The cells were transfected with pCEP4-tetR-IL-24 using lipofectamine 2000. The expression of IL-24 was detected by Western blotting. The suppression of cellular growth was determined by MTT assay and trypan blue rejection. The induction of apoptosis was analyzed by Annexin Ⅴ staining.
RESULTS: IL-24 protein was induced to express in gastric cancer cells (MGC803 and BGC823) and normal cells (GES-1) after transfection with pCEP4-tetR-IL-24. In the MGC803 and BGC823 cells, cellular growth was inhibited more efficiently (P < 0.01, 0.001-0.006), and the percentage of apoptosis cells was higher after doxycline induction (23.5%/25.6%→33.8%/36.7%, P < 0.01). However, there were no differences observed in GES-1 cells among the groups (P > 0.05).
CONCLUSION: The plasmid-mediated tranfection of IL-24 selectively induces the suppression of cell growth and apoptosis in gastric cancer cells. Tetracycline can regulate the expression of IL-24 in gastric cancer cells and normal epithelial cells.
Collapse
|
5
|
Fradiani PA, Ascenzioni F, Lavitrano M, Donini P. Telomeres and telomerase activity in pig tissues. Biochimie 2004; 86:7-12. [PMID: 14987795 DOI: 10.1016/j.biochi.2003.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/20/2003] [Indexed: 11/22/2022]
Abstract
The current state of the art concerning telomeres and telomerase stems almost exclusively from the analysis of protozoa, yeast, and a small number of mammals. In the present study, we confirm that the pig telomeric sequence is indeed T(2)AG(3), as previously suggested. By making use of sequence analysis of pig telomeric DNA variant telomeric repeats in the medial region of the telomeres, interspersed with canonical T(2)AG(3) repeats, were identified. This telomere organization is similar to the one present in humans. Analysis of terminal restriction fragments showed that the majority of telomeres from different pig tissues are longer than in humans but shorter than in Mus musculus. Telomeres from spermatozoa were found to be longer, ranging in size between 13 and 44 kb. Most of the somatic pig tissues expressed significant levels of telomerase activity, a situation more similar to mouse and that contrasts with the one in humans and dog. Moreover, the analysis of sperm cells from different epididymal compartments of an adult animal showed that telomerase activity is absent in maturing spermatozoa, suggesting that sperm telomere elongation is restricted during spermatogenesis.
Collapse
Affiliation(s)
- P A Fradiani
- Dipartimento di Biologia Cellulare e dello Svilluppo, Università di Roma La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
6
|
Oberle V, de Jong G, Drayer JI, Hoekstra D. Efficient transfer of chromosome-based DNA constructs into mammalian cells. ACTA ACUST UNITED AC 2004; 1676:223-30. [PMID: 14984928 DOI: 10.1016/j.bbaexp.2003.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
Artificial chromosomes, engineered minichromosomes and other chromosome-based DNA constructs are promising new vectors for use in gene therapy, protein production and transgenics. However, a major drawback in the application of chromosome-based DNA is the lack of a suitable and convenient procedure for large-scale cellular introduction, which is particularly frustrated by their size (1 by 2 microm). Here we present a method to transfer Artificial Chromosome Expression systems (ACEs) into mammalian cells, which relies on a combined approach of using cationic amphiphiles and high frequency ultrasound. Thus, when cells were preincubated with liposomes consisting of the cationic lipid SAINT-2 and the phospholipid dioleoylphosphatidylethanolamine (molar ratio 1:1), followed by ultrasound, ACEs could be introduced into mammalian cells, which resulted in the expression of ACEs-harbored reporter genes, such as Green Fluorescent Protein. Depending on cell type, transfection efficiencies ranged from 12% to 53%. Interestingly, no detectable delivery occurred when cells were treated alone with either ultrasound or liposomes. Evidence is provided, based on cellular entry of differently sized beads and trypan-blue permeation, which supports a mechanism in which integration of the lipids creates unstable membrane domains, which are particularly prone to ultrasound-induced pore formation. Time- and temperature-dependent experiments indicate that these pores display a transient stability. Hence, following ultrasound, the pores disappear as a function of time as suggested by a time-window for ACEs entry, and trypan blue exclusion, 80% of the cells becoming stained immediately following ultrasound, dropping to approximately 20% after 30 min. Co-expression of different genes in conjunction with fluorescence in situ hybridization (FISH) analysis indicates that the current procedure provides a means to introduce functionally active artificial chromosomes into eukaryotic cells.
Collapse
Affiliation(s)
- Volker Oberle
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Abstract
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In this review we will first discuss the chromosomal elements, such as enhancers, locus control regions, boundary elements, insulators and scaffold- or matrix-attachment regions, involved in the hierarchic regulation of mammalian gene expression and replication. These elements have been used to design vectors that behave as artificial domains when integrating into the genome. We then discuss recent progress in the use of mammalian artificial chromosomes and small circular non-viral vectors for their use as expression systems in mammalian cells.
Collapse
Affiliation(s)
- H J Lipps
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448, Witten, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Guiducci C, Ascenzioni F, Auriche C, Piccolella E, Guerrini AM, Donini P. Use of a human minichromosome as a cloning and expression vector for mammalian cells. Hum Mol Genet 1999; 8:1417-24. [PMID: 10400988 DOI: 10.1093/hmg/8.8.1417] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A natural human minichromosome (MC1) derived from human chromosome 1 was shown to be linear and to have a size of 5.5 Mb. Human IL-2 cDNA and the neo gene were co-transfected into a MC1-containing human-CHO hybrid cell line. Integration of the foreign genes was directed to the pericentromeric region of MC1 by co-transfection of chromosome 1-specific satellite 2 DNA. A number of G418-resistant transfectants were obtained and expression of IL-2 was determined. FISH analysis demonstrated co-localization in the minichromosome of the IL-2 gene and of the satellite 2 DNA. An IL-2-producing clone was used in cell fusion experiments with IL-2-dependent murine CTLL cells to generate CTLL-human hybrids containing the modified minichromosome (MC1- IL2 ). The hybrids were able to grow in medium lacking IL-2 for 17 mean population doublings (MPD), indicating that expression of the cytokine was sufficient to relieve the IL-2 dependence of CTLL proliferation. Endogenous IL-2 production delayed the onset of apoptosis in the IL-2-dependent CTLL cells. Mitotic stability was shown to be 100% in the human-CHO hybrids and 97% per MPD in CTLL cells. These results demonstrate that a natural human minichromosome can be utilized as a cloning and expression vector for mammalian cells and that the MC1 minichromosome can be engineered to deliver IL-2 to two types of cells, fibroblasts and lymphocytes.
Collapse
Affiliation(s)
- C Guiducci
- Istituto Pasteur-Fondazione Cenci Bolognetti, c/o Dipartimento di Biologia Cellulare e dello Sviluppo, Università 'La Sapienza', Via degli Apuli 1, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 1999; 27:426-8. [PMID: 9862961 PMCID: PMC148196 DOI: 10.1093/nar/27.2.426] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed an episomal replicating expression vector in which the SV40 gene coding for the large T-antigen was replaced by chromosomal scaffold/matrix attached regions. Southern analysis as well as vector rescue experiments in CHO cells and in Escherichia coli demonstrate that the vector replicates episomally in CHO cells. It occurs in a very low copy number in the cells and is stably maintained over more than 100 generations without selection pressure.
Collapse
Affiliation(s)
- C Piechaczek
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | | | | | | | | |
Collapse
|