1
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
2
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
3
|
Duarte FS, Duzzioni M, Leme LR, Smith SDP, De Lima TC. Evidence for involvement of NK3 receptors in the anxiogenic-like effect of SP6-11(C-terminal), a metabolite of substance P, in rats evaluated in the elevated plus-maze. Behav Brain Res 2016; 303:168-75. [DOI: 10.1016/j.bbr.2016.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 02/05/2023]
|
4
|
Ollmann T, Péczely L, László K, Kovács A, Gálosi R, Kertes E, Kállai V, Zagorácz O, Karádi Z, Lénárd L. Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behav Brain Res 2015; 294:208-14. [PMID: 26296669 DOI: 10.1016/j.bbr.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. NT is involved in reward and memory processes, drug addiction and also in the regulation of anxiety. The ventral pallidum (VP) receives neurotensinergic innervation from the ventral striatopallidal pathway originating from the nucleus accumbens. Positive reinforcing effects of NT in the VP had been shown recently, however the possible effects of NT on anxiety have not been examined yet. In our present experiments, the effects of NT on anxiety were investigated in the VP. In male Wistar rats bilateral microinjections of 100 ng or 250 ng NT were delivered in the volume of 0.4 μl into the VP, and elevated plus maze (EPM) test was performed. In another groups of animals, 35 ng NT-receptor 1 (NTR1) antagonist SR 48,692 was applied by itself, or microinjected 15 min before 100 ng NT treatment. Open field test (OPF) was also conducted. The 100 ng dose of NT had anxiolytic effect, but the 250 ng NT did not influence anxiety. The antagonist pretreatment inhibited the effect of NT, while the antagonist itself had no effect. In the OPF test there was no difference among the groups. Our present results show that microinjection of NT into the VP induces anxiolytic effect, which is specific to the NTR1 receptors because it can be eliminated by a specific NTR1 antagonist. It is also substantiated that neither the NT, nor the NTR1 antagonist in the VP influences locomotor activity.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Pécs University, Szentágothai Center, Pécs, Hungary.
| |
Collapse
|
5
|
Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 2014; 46:1727-50. [PMID: 24705689 DOI: 10.1007/s00726-014-1736-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.
Collapse
|
6
|
Abstract
The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function.
Collapse
Affiliation(s)
- Hamid R. Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| |
Collapse
|
7
|
Pickel VM, Shobin ET, Lane DA, Mackie K. Cannabinoid-1 receptors in the mouse ventral pallidum are targeted to axonal profiles expressing functionally opposed opioid peptides and contacting N-acylphosphatidylethanolamine-hydrolyzing phospholipase D terminals. Neuroscience 2012; 227:10-21. [PMID: 22863674 DOI: 10.1016/j.neuroscience.2012.07.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 12/13/2022]
Abstract
The ventral pallidum (VP) is a major recipient of inhibitory projections from nucleus accumbens (Acb) neurons that differentially express the reward (enkephalin) and aversion (dynorphin)-associated opioid peptides. The cannabinoid-1 receptor (CB1R) is present in Acb neurons expressing each of these peptides, but its location in the VP is not known. To address this question, we used electron microscopic dual immunolabeling of the CB1R and either dynorphin 1-8 (Dyn) or Met(5)-enkephalin (ME) in the VP of C57BL/6J mice, a species in which CB1R gene deletion produces a reward deficit. We also used similar methods to determine the relationship between the CB1R and N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD), an anandamide-synthesizing enzyme located presynaptically in other limbic brain regions. CB1R-immunogold was principally localized to cytoplasmic endomembranes and synaptic or extrasynaptic plasma membranes of axonal profiles, but was also affiliated with postsynaptic membrane specializations in dendrites. The axonal profiles included many single CB1R-labeled axon terminals as well as terminals containing CB1R-immunogold and either Dyn or ME immunoreactivity. Dually labeled terminals comprised 26% of all Dyn- and 17% of all ME-labeled axon terminals. Both single- and dual-labeled terminals formed mainly inhibitory-type synapses, but almost 16% of these terminals formed excitatory synapses. Approximately 60% of the CB1R-labeled axonal profiles opposed or converged with axon terminals containing NAPE-PLD immunoreactivity. We conclude that CB1Rs in the mouse VP have subcellular distributions consistent with on demand activation by endocannabinoids that can regulate the release of functionally opposed opioid peptides and also modulate inhibitory and excitatory transmission.
Collapse
Affiliation(s)
- V M Pickel
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61th Street, New York, NY 10065, United States.
| | | | | | | |
Collapse
|
8
|
Nikolaus S, Antke C, Beu M, Müller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders--results from in vivo imaging studies. Rev Neurosci 2010; 21:119-39. [PMID: 20614802 DOI: 10.1515/revneuro.2010.21.2.119] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Various factors are discussed in the pathophysiology of anxiety disorders, including dysfunctions of the (DA)ergic, serotonin (5-HT)ergic and GABAergic system. We assessed the contribution of the individual synaptic constituents by subjecting all available in vivo imaging studies on patients with anxiety disorders to a retrospective analysis. On a total of 504 patients with obsessive-compulsive disorder (OCD), generalized anxiety disorder (GAD), panic disorder (PD), phobia, or posttraumatic stress-disorder (PTSD) and 593 controls, investigations of VMAT2, DAT, SERT, D1, D2, 5-HTIA, 5-HT2A, GABA(A), and NK1 receptor binding in neostriatum, ventral striatum, thalamus, neocortex, limbic system, cingulate, midbrain/ pons or cerebellum were performed using either PET or SPECT. Separate analyses of the individual disorders showed significant decreases of striatal D2 receptors in OCD (-18%), mesencephalic SERT in OCD (-13%), frontocortical GABAA receptors in PD (-13%) and temporocortical GABAA receptors in GAD (-16%). Pooling of all disorders yielded a significant reduction of mesencephalic SERT (-13%), mesencephalic (-27%) as well as cingulate 5-HT1A receptors (-18%), striatal D2 receptors (-21%) and frontal (-14%), temporal (-14%), occipital (-13%) and cingulate GABAA receptors (-15%). The results show that DA, 5-HT, and GABA play a major role in all subtypes of anxiety disorders. In particular, the findings imply that the regulation state of DA as modulated by GABA and 5-HT may be crucial for the development of anxiety- and compulsion-related disorders. As GABA and 5-HT inhibit DAergic neurotransmission, the reductions of GABAA, 5-HT1A and SERT can be assumed to result in an enhanced activity of the mesolimbic DAergic system. This notion is also reflected by the decrease of striatal D2 receptor binding, which is indicative of an increased availability of synaptic DA.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf Heinrich-Heine University Moorenstr. 5, 40225 Dŭsseldorf Germany.
| | | | | | | |
Collapse
|
9
|
Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav Brain Res 2009; 204:32-66. [DOI: 10.1016/j.bbr.2009.06.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
10
|
Yang ARST, Yi HS, Mamczarz J, June HL, Hwang BH, June HL. Deficits in substance P mRNA levels in the CeA are inversely associated with alcohol-motivated responding. Synapse 2009; 63:972-81. [PMID: 19593822 DOI: 10.1002/syn.20677] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, in vitro and in vivo studies were conducted to determine the relationship between innate substance P (SP) levels and alcohol-motivated behavior in alcohol-preferring (P) and nonpreferring (NP) rat lines. In Experiment 1, in situ hybridization and quantitative autoradiography were used to detect and measure SP mRNA levels in discrete brain loci of the P and NP rats. The results indicated significantly lower SP mRNA levels in the central nucleus of the amygdala (CeA) of P compared with those of NP rats. Experiment 2 evaluated the effects of SP, microinfused into the CeA, on alcohol (10%, v/v) and sucrose (2%, w/v) motivated responding in the P rat. The results revealed that, when infused into the CeA (1-8 microg), SP reduced alcohol responding by 48-85% of control levels, with no effects on sucrose responding. Neuroanatomical control infusions (1-8 microg) into the caudate putamen (CPu) also failed to significantly alter alcohol- or sucrose-motivated behaviors. Given the selective reductions on alcohol (compared to sucrose) responding by direct intracranial infusion of SP, the data suggest that deficits in SP signaling within the CeA (an anxiety regulating locus) are inversely associated with alcohol-motivated behaviors. Activation of SP receptors in the CeA may reduce anxiety-like behavior in the P rat and contribute to reductions on alcohol responding. The SP system may be a suitable target for the development of drugs to reduce alcohol-drinking behavior in humans.
Collapse
Affiliation(s)
- Andrew Rong Song Tzeng Yang
- Division of Alcohol and Drug Abuse, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
11
|
Involvement of the limbic basal ganglia in ethanol withdrawal convulsivity in mice is influenced by a chromosome 4 locus. J Neurosci 2008; 28:9840-9. [PMID: 18815268 DOI: 10.1523/jneurosci.1713-08.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains ethanol (alcohol) use/abuse and may contribute to relapse in alcoholics. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We generated congenic mice that confirm a quantitative trait locus (QTL) on chromosome 4 with a large effect on predisposition to alcohol withdrawal. Using c-Fos expression as a high-resolution marker of neuronal activation, congenic mice demonstrated significantly less neuronal activity associated with ethanol withdrawal than background strain mice in the substantia nigra pars reticulata (SNr), subthalamic nucleus (STN), rostromedial lateral globus pallidus, and ventral pallidum. Notably, neuronal activation in subregions of the basal ganglia associated with limbic function was more intense than in subregions associated with sensorimotor function. Bilateral lesions of caudolateral SNr attenuated withdrawal severity after acute and repeated ethanol exposures, whereas rostrolateral SNr and STN lesions did not reduce ethanol withdrawal severity. Caudolateral SNr lesions did not affect pentylenetetrazol-enhanced convulsions. Our results suggest that this QTL impacts ethanol withdrawal via basal ganglia circuitry associated with limbic function and that the caudolateral SNr plays a critical role. These are the first analyses to elucidate circuitry by which a confirmed addiction-relevant QTL influences behavior. This mouse QTL is syntenic with human chromosome 9p. Given the growing body of evidence that a gene(s) on chromosome 9p influences alcoholism, our results can facilitate human research on alcohol dependence and withdrawal.
Collapse
|
12
|
Carvalho MC, Masson S, Brandão ML, de Souza Silva MA. Anxiolytic-like effects of substance P administration into the dorsal, but not ventral, hippocampus and its influence on serotonin. Peptides 2008; 29:1191-200. [PMID: 18490080 DOI: 10.1016/j.peptides.2008.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/18/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Substance P (SP) is known to be involved in processes related to learning and memory, fear, anxiety and stress. SP and NK1 receptors are localized in the hippocampus, a brain structure involved in learning and memory as well as emotional processes. As there is evidence for differential functions of the ventral (VH) and dorsal (DH) hippocampus in a variety of behaviors, we here evaluated the effects of injections of SP into the VH and DH in rats submitted to the elevated plus-maze (EPM) and open field (OF) tests. The results obtained showed that infusions of 100 and 1000 ng of SP into the DH, but not VH, increased open arm activity in the EPM and in the central zone of the OF, indicative of anxiolytic-like action. These effects were observed in the absence of significant changes in general motor activity. In an additional experiment to examine whether these effects of SP are mediated by local serotoninergic mechanisms, extracellular concentrations of this monoamine were assessed by use of in vivo microdialysis. Infusions of SP into the DH did not influence the extracellular concentration of serotonin. These data indicate that neurokinins in the DH, but not VH, are involved in mechanisms associated with anxiety and that the mediation of SP in anxiety-related behaviors is independent of local serotonergic mechanisms.
Collapse
Affiliation(s)
- M C Carvalho
- Instituto de Neurociências e Comportamento (INeC), Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
13
|
Fransson R, Botros M, Nyberg F, Lindeberg G, Sandström A, Hallberg M. Small peptides mimicking substance P (1-7) and encompassing a C-terminal amide functionality. Neuropeptides 2008; 42:31-7. [PMID: 18093649 DOI: 10.1016/j.npep.2007.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/22/2007] [Accepted: 11/09/2007] [Indexed: 11/28/2022]
Abstract
Some of the biological effects demonstrated after administration of substance P (SP) in vivo can indirectly be attributed to the fragmentation of the undecapeptide to its N-terminal bioactive fragment SP(1-7). This heptapeptide (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is a major bioactive metabolite from SP that frequently exerts similar biological effects as the parent peptide but also, in several cases, completely opposite actions. Specific binding sites for the heptapeptide SP(1-7) that are separate from the SP preferred NK receptors have been identified. In this study we demonstrate that (a) the C-terminal part of the SP metabolite SP(1-7) is most important for binding as deduced from an Ala scan and that a replacement of Phe(7) for Ala is deleterious, (b) truncation of the N-terminal amino acid residues of SP(1-7) delivers peptides with retained binding activity, although with somewhat lower binding affinities than SP(1-7) and (c) a C-terminal amide group as a replacement for the terminal carboxy group of SP(1-7) and for all of the truncated ligands synthesized affords approximately 5-10-fold improvements of the binding affinities.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31:251-72. [PMID: 16820980 DOI: 10.1007/s00726-006-0335-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 12/18/2022]
Abstract
Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.
Collapse
Affiliation(s)
- K Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
15
|
De Souza Silva MA, Mello EL, Müller CP, Jocham G, Maior RS, Huston JP, Tomaz C, Barros M. The tachykinin NK3 receptor antagonist SR142801 blocks the behavioral effects of cocaine in marmoset monkeys. Eur J Pharmacol 2006; 536:269-78. [PMID: 16603151 DOI: 10.1016/j.ejphar.2006.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/21/2006] [Accepted: 03/06/2006] [Indexed: 11/27/2022]
Abstract
Brain neuropeptide transmitters of the tachykinin family are involved in the organization of many behaviors. However, little is known about their contribution to the behavioral effects of drugs of abuse. Recently, the tachykinin NK3 receptor, one of the three tachykinin receptors in the brain, was shown to attenuate the acute and chronic behavioral effects of cocaine in rats. In order to test if these findings can be generalized to primates we investigated the role of the tachykinin NK3 receptor in the acute behavioral effects of cocaine in marmoset monkeys (Callithrix penicillata) using a figure-eight maze procedure. Animals were pretreated with the tachykinin NK3 receptor antagonist, (R)-(N)-[1-[3-[1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl]propyl]-4-phenylpiperidin-4-yl]-N-methylacetamide (SR142801; 0, 0.02, 0.2, 2.0 mg/kg, i.p.), and received either a treatment with cocaine (10 mg/kg, i.p) or saline (i.p.). Cocaine increased locomotor activity and aerial glance behavior, but reduced exploratory and bodycare activities, scent marking and terrestrial scanning behavior. A sensitivity analysis revealed that two responder types can be differentiated in relation to the occurrence of a hyperlocomotor response to cocaine. SR142801 blocked the actions of cocaine on several behaviors dose-dependently for each responder type, respectively. There was no effect of SR142801 alone on any behavior measured. These data suggest that the tachykinin NK3 receptor contributes to the individual behavioral response to cocaine in marmoset monkeys. Having no behavioral effects on its own, but blocking the cocaine effects, might suggest the tachykinin NK3 receptor antagonist, SR142801, as a potential treatment of cocaine addiction in humans.
Collapse
Affiliation(s)
- Maria A De Souza Silva
- Institute of Physiological Psychology and Center for Biological and Medical Research, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Duarte FS, Testolin R, De Lima TCM. Further evidence on the anxiogenic-like effect of substance P evaluated in the elevated plus-maze in rats. Behav Brain Res 2004; 154:501-10. [PMID: 15313039 DOI: 10.1016/j.bbr.2004.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 03/22/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
Substance P (SP) and its preferred NK1 receptor are widely expressed throughout the fear-processing pathways of the brain and its role in the modulation of experimental anxiety has been demonstrated. SP, like other peptides, are cleaved by peptidases in two fragments: C-terminal (SP 6-11) and N-terminal (SP 1-7) that could be responsible for its anxiogenic-like response. In this study we investigate the effects of i.c.v. micro-injections of SP free acid (SPfa), which is resistant to enzymatic cleavage, the influence of the pretreatment with peptidase inhibitors (PIs), thiorphan and/or phosphoramidon, as well as the effects of SP 6-11 and SP 1-7 and the participation of NK1 and NK2 receptors on their behavioral effects. Adult male Wistar rats were treated with 10 pmol solutions of SP 6-11, SP 1-7 or 1 and 10 pmol of SPfa and evaluated in the elevated plus maze (EPM) test. Other experimental groups received thiorphan 0.2 pmol, phosphoramidon 2 pmol or both PIs 30 min prior SP 1-11, 10 pmol i.c.v. The C-terminal fragment (SP 6-11, 10 pmol) and SPfa (1 pmol) promoted an anxiogenic-like profile of action similar to 10 pmol of SP 1-11, i.e., a decrease of entries and time spent on the open arms, whereas the N-terminal fragment (SP 1-7) was inactive at the EPM. The effect of SP 6-11 was inhibited by pretreatment (100 pmol) with NK1 (FK 888) and NK2 (SR 48968) antagonists. Moreover, both PIs enhanced the SP effect when used alone, but their combination produced an apparent reversion of anxiogenic-like effect produced by SP. Altogether, our results give further support to the SP role in the modulation of experimental anxiety in rats.
Collapse
Affiliation(s)
- Filipe S Duarte
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, Florianópolis, SC 88015-420, Brazil
| | | | | |
Collapse
|
17
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
18
|
Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 2003; 463:67-96. [PMID: 12600703 DOI: 10.1016/s0014-2999(03)01275-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A multitude of mechanisms are involved in the control of emotion and in the response to stress. These incorporate mediators/targets as diverse as gamma-aminobutyric acid (GABA), excitatory amino acids, monoamines, hormones, neurotrophins and various neuropeptides. Behavioural models are indispensable for characterization of the neuronal substrates underlying their implication in the etiology of anxiety, and of their potential therapeutic pertinence to its management. Of considerable significance in this regard are conflict paradigms in which the influence of drugs upon conditioned (trained) behaviours is examined. For example, the Vogel conflict test, which was introduced some 30 years ago, measures the ability of drugs to release the drinking behaviour of water-deprived rats exposed to a mild aversive stimulus ("punishment"). This model, of which numerous procedural variants are discussed herein, has been widely used in the evaluation of potential anxiolytic agents. In particular, it has been exploited in the characterization of drugs interacting with GABAergic, glutamatergic and monoaminergic networks, the actions of which in the Vogel conflict test are summarized in this article. More recently, the effects of drugs acting at neuropeptide receptors have been examined with this model. It is concluded that the Vogel conflict test is of considerable utility for rapid exploration of the actions of anxiolytic (and anxiogenic) drugs. Indeed, in view of its clinical relevance, broader exploitation of the Vogel conflict test in the identification of novel classes of anxiolytic agents, and in the determination of their mechanisms of action, would prove instructive.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| | | |
Collapse
|
19
|
Gavioli EC, Canteras NS, De Lima TCM. The role of lateral septal NK1 receptors in mediating anxiogenic effects induced by intracerebroventricular injection of substance P. Behav Brain Res 2002; 134:411-5. [PMID: 12191828 DOI: 10.1016/s0166-4328(02)00054-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lateral septal nucleus (LS) presents a dense plexus of fibers containing substance P (SP), which is known to induce pronounced anxiogenic-like effects when applied into this brain site. In the present report, we investigated the role of lateral septal NK(1) receptors in mediating the pro-aversive effects resulting from intracerebroventricular (i.c.v.) injection of SP in rats observed in the elevated plus-maze (EPM) test. Our results show that FK888, a selective NK(1) receptor antagonist, injected into the LS inhibited the anxiogenic-like responses induced by SP i.c.v. injections, whereas the treatment with FK888 into the LS did not alter 'per se' the parameters recorded in the EPM test when compared to the control group that received physiological buffer solution into the LS and lateral ventricle. Thus, our data suggest that the anxiogenic-like responses induced by SP centrally injected are, to a large extent, mediated by NK(1) receptors in the LS.
Collapse
Affiliation(s)
- E C Gavioli
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima, 82 Centro, 88015-420 Florianópolis, SC, Brazil
| | | | | |
Collapse
|
20
|
Barros M, De Souza Silva MA, Huston JP, Tomaz C. Anxiolytic-like effects of substance P fragment (SP(1-7)) in non-human primates (Callithrix penicillata). Peptides 2002; 23:967-73. [PMID: 12084529 DOI: 10.1016/s0196-9781(02)00020-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavioral effects of the amino (N)-terminal fragment of substance P (SP(1-7)) on the marmoset (Callithrix penicillata) predator confrontation test of fear/anxiety were investigated. The test apparatus consisted of a figure-eight maze with three parallel arms interconnected at each extremity to a perpendicular arm. A taxidermized oncilla cat (Felis tigrina) was placed outside the maze facing one of its corners. Subjects were submitted to seven 30 min maze habituation trials (HTs), in the absence of the 'predator', and then to six 30 min treatment trials (TTs), in the presence of the 'predator', consisting of four doses of SP(1-7) (5, 50, 250 and 500 microg/kg; IP), saline and sham injection. SP(1-7) treatment reversed, in a dose-dependent way, the fear-induced avoidance behavior due to the predator's presence and increased the frequency of exploratory behaviors. Locomotor activity decreased during successive HTs, yet increased after all SP(1-7) treatments. These results indicate that systemic administration of SP(1-7) produces anxiolytic-like effects in marmosets tested in the predator confrontation model of fear/anxiety.
Collapse
Affiliation(s)
- Marilia Barros
- Laboratory of Neurobiology, Primate Center and Department of Physiological Sciences, Institute of Biology, University of Brasilia, C.P. 04631, DF, Brasília, Brazil
| | | | | | | |
Collapse
|
21
|
Millan MJ, Girardon S, Mullot J, Brocco M, Dekeyne A. Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin1 (NK1) receptor antagonists. Neuropharmacology 2002; 42:677-84. [PMID: 11985826 DOI: 10.1016/s0028-3908(02)00021-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By analogy with the selective serotonin reuptake inhibitor, fluvoxamine, and the tricyclic agent, clomipramine, the novel, selective, non-peptidergic NK(1) receptor antagonist, GR205,171, dose-dependently and completely blocked marble-burying behaviour in mice: Inhibitory Dose(50)s (ID(50)s), 4.5, 4.8 and 7.6 mg/kg, respectively. In contrast to GR205,171, its isomer, GR226,206, which displays substantially lower affinity for NK(1) receptors, was inactive (> 40.0 mg/kg). By analogy with GR205,171, a further, selective NK(1) antagonist, RP67,580, abolished marble-burying behaviour with an ID(50) of 11.9 mg/kg. At doses significantly reducing marble-burying behaviour, GR205,171 and RP67,580 little influenced motor behaviour. In conclusion, like fluvoxamine and clomipramine, selective, non-peptidergic NK(1) receptor antagonists block marble-burying in mice. Although the biological bases of this behaviour remain unclear, these observations underpin the contention that NK(1) receptors may be implicated in affective disorders.
Collapse
Affiliation(s)
- M J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 chemin de Ronde, 78290 - Croissy/Sein, Paris, France.
| | | | | | | | | |
Collapse
|
22
|
Zhou Q, Nyberg F. Injection of substance P (SP) N-terminal fragment SP(1-7) into the ventral tegmental area modulates the levels of nucleus accumbens dopamine and dihydroxyphenylacetic acid in male rats during morphine withdrawal. Neurosci Lett 2002; 320:117-20. [PMID: 11852176 DOI: 10.1016/s0304-3940(01)02564-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The biologically active substance P (SP) N-terminal metabolite SP(1-7) has been reported to modulate several neural processes such as learning, locomotor activity and reaction to opioid withdrawal. Although all these processes are believed to be associated with dopaminergic transmission no evidence of an interaction between SP(1-7) and dopamine in the case of morphine withdrawal has so far been reported. Therefore, in this work we applied in vivo microdialysis to investigate the effect of SP(1-7) injection into the ventral tegmental area on dopamine release in nucleus accumbens of male rats during naloxone precipitated morphine withdrawal. The result showed that the heptapeptide enhances dopamine release and also elevates the level of the dopamine metabolite dihydroxyphenylacetic acid in this brain area. It was suggested that the observed action of the SP fragment on the dopamine system represents the underlying mechanism for a previously observed ability of SP(1-7) to counteract the aversion response to morphine withdrawal.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
23
|
Hasenöhrl RU, Souza-Silva MA, Nikolaus S, Tomaz C, Brandao ML, Schwarting RK, Huston JP. Substance P and its role in neural mechanisms governing learning, anxiety and functional recovery. Neuropeptides 2000; 34:272-80. [PMID: 11049731 DOI: 10.1054/npep.2000.0824] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neurokinin Substance P (SP) is widely distributed in the central nervous system and has been extensively studied in various functional aspects. This review focuses on the behavioral relevance of SP. Here we show that SP can have memory-promoting, reinforcing and anxiolytic-like effects when administered systemically or into the nucleus basalis of the ventral pallidum. These effects seem to be mediated via the SP-preferring NK(1)receptor and differentially related to N- versus C-terminal fragments of the undecapeptide. Secondly, SP injection into the ventral pallidum can lead to increases of acetylcholine in frontal cortex and dopamine in nucleus accumbens, suggesting that the hypermnestic, positively reinforcing and anxiolytic effects observed upon basal forebrain injection of SP are mediated by activation of the nucleus accumbens-ventral pallidum circuitry. Furthermore, SP and certain SP-fragments may not only be considered to have beneficial behavioral effects in normal animals, but can also prevent lesion-induced functional deficits and improve the speed of recovery. This indicates that SP agonists might also have a neuroprotective capacity in parallel with recovery-promoting actions.
Collapse
Affiliation(s)
- R U Hasenöhrl
- Institute of Physiological Psychology & Center for Biological and Medical Research, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|