1
|
Apawu AK, Callan SP, Mathews TA, Bowen SE. Repeated toluene exposure leads to neuroadaptation in dopamine release mechanisms within the nucleus accumbens core. Toxicol Appl Pharmacol 2020; 408:115260. [DOI: 10.1016/j.taap.2020.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
|
2
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
van Thriel C, Westerink RHS, Beste C, Bale AS, Lein PJ, Leist M. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 2011; 33:911-24. [PMID: 22008243 DOI: 10.1016/j.neuro.2011.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/04/2011] [Indexed: 12/11/2022]
Abstract
The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can result in neurobehavioural alterations, and these have been used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-d-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment.
Collapse
Affiliation(s)
- Christoph van Thriel
- Neurobehavioural Toxicology and Chemosensation, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Hester SD, Johnstone AF, Boyes WK, Bushnell PJ, Shafer TJ. Acute toluene exposure alters expression of genes in the central nervous system associated with synaptic structure and function. Neurotoxicol Teratol 2011; 33:521-9. [DOI: 10.1016/j.ntt.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
5
|
Abstract
The fundamental principle that unites addictive drugs appears to be that each enhances synaptic dopamine by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. This occurs via the modulation of synaptic mechanisms that can be involved in learning, including enhanced excitation or disinhibition of dopamine neuron activity, blockade of dopamine reuptake, and altering the state of the presynaptic terminal to enhance evoked over basal transmission. Amphetamines offer an exception to such modulation in that they combine multiple effects to produce nonexocytic stimulation-independent release of neurotransmitter via reverse transport independent from normal presynaptic function. Questions about the molecular actions of addictive drugs, prominently including the actions of alcohol and solvents, remain unresolved, but their ability to co-opt normal presynaptic functions helps to explain why treatment for addiction has been challenging.
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, Black 308, 650 W. 168 St., New York, NY 10032, USA.
| |
Collapse
|
6
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Lin HM, Liu CY, Jow GM, Tang CY. Toluene disrupts synaptogenesis in cultured hippocampal neurons. Toxicol Lett 2009; 184:90-6. [DOI: 10.1016/j.toxlet.2008.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/22/2008] [Accepted: 10/26/2008] [Indexed: 10/21/2022]
|
8
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lubman DI, Yücel M, Lawrence AJ. Inhalant abuse among adolescents: neurobiological considerations. Br J Pharmacol 2008; 154:316-26. [PMID: 18332858 PMCID: PMC2442441 DOI: 10.1038/bjp.2008.76] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/31/2008] [Accepted: 02/12/2008] [Indexed: 12/15/2022] Open
Abstract
Experimentation with volatile substances (inhalants) is common during early adolescence, yet limited work has been conducted examining the neurobiological impact of regular binge use during this key stage of development. Human studies consistently demonstrate that chronic use is associated with significant toxic effects, including neurological and neuropsychological impairment, as well as diffuse and subtle changes in white matter. However, most preclinical research has tended to focus on acute exposure, with limited work examining the neuropharmacological or toxicological mechanisms underpinning these changes or their potential reversibility with abstinence. Nevertheless, there is growing evidence that commonly abused inhalants share common cellular mechanisms, and have similar actions to other drugs of abuse. Indeed, the majority of acute behavioural effects appear to be underpinned by changes in receptor and/or ion channel activity (for example, GABA(A), glycine and 5HT(3) receptor activation, NMDA receptor inhibition), although nonspecific interactions can also arise at high concentrations. Recent studies examining the effects of toluene exposure during the early postnatal period are suggestive of long-term alterations in the function of NMDA and GABA(A) receptors, although limited work has been conducted investigating exposure during adolescence. Given the critical role of neurotransmitter systems in cognitive, emotional and brain development, future studies will need to take account of the substantial neuromaturational changes that are known to occur in the brain during childhood and adolescence, and to specifically investigate the neuropharmacological and toxicological profile of inhalant exposure during this period of development.
Collapse
Affiliation(s)
- D I Lubman
- ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
10
|
Abstract
This review attempts to touch on the history and application of amperometry at PC12 cells for fundamental investigation into the exocytosis process. PC12 cells have been widely used as a model for neural differentiation and as such they have been used to examine the effects of differentiation on exocytotic release and specifically release at varicosities. In addition, dexamethasone-differentiated cells have been shown to have an increased number of releasable vesicles with increased quantal size, thereby allowing for an even broader range of applications including neuropharmacological and neurotoxicological studies. PC12 cells exhibiting large numbers of events have two distinct pools of vesicles, one about twice the quantal size of the other and each about half the total releasable vesicles. As will be outlined in this review, these cells have served as an extremely useful model of exocytosis in the study of the latency of stimulation-release coupling, the role of exocytotic proteins in regulation of release, effect of drugs on quantal size, autoreceptors, fusion pore biophysics, environmental factors, health and disease. As PC12 cells have some advantages over other models for neurosecretion, including chromaffin cells, it is more than likely that in the following decade PC12 cells will continue to serve as a model to study exocytosis.
Collapse
Affiliation(s)
- R H S Westerink
- Cellular and Molecular Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
11
|
Riegel AC, Zapata A, Shippenberg TS, French ED. The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons. Neuropsychopharmacology 2007; 32:1558-69. [PMID: 17213847 DOI: 10.1038/sj.npp.1301273] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recreational abuse of toluene-containing volatile inhalants by adolescents is a significant public health problem. The mechanisms underlying the abuse potential of such substances remain unclear, but could involve increased activity in mesoaccumbal dopamine (DA) afferents innervating the nucleus accumbens (ACB). Here, using in vitro electrophysiology, we show that application of behaviorally relevant concentrations of toluene directly stimulates DA neurons in the ventral tegmental area (VTA), but not surrounding midbrain regions. Toluene stimulation of VTA neurons persists when synaptic transmission is reduced. Moreover, unlike non-DA neurons, the magnitude of VTA DA neuron firing does not decline during longer exposures designed to emulate 'huffing'. Using dual-probe in vivo microdialysis, we show that perfusion of toluene directly into the VTA increases DA concentrations in the VTA (somatodendritic release) and its terminal projection site, the ACB. These results provide the first demonstration that even brief exposure to toluene increases action potential drive onto mesoaccumbal VTA DA neurons, thereby enhancing DA release in the ACB. The finding that toluene stimulates mesoaccumbal neurotransmission by activating VTA DA neurons directly (independently of transynaptic inputs) provide insights into the neural substrates that may contribute to the initiation and pathophysiology of toluene abuse.
Collapse
Affiliation(s)
- Arthur C Riegel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | | |
Collapse
|
12
|
Bowen SE, Batis JC, Paez-Martinez N, Cruz SL. The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. Neurotoxicol Teratol 2006; 28:636-47. [PMID: 17064879 DOI: 10.1016/j.ntt.2006.09.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/08/2006] [Accepted: 09/09/2006] [Indexed: 11/20/2022]
Abstract
The abuse of volatile organic solvents (inhalants) leads to diverse sequelae at levels ranging from the cell to the whole organism. This paper reviews findings from the last 10 years of animal models investigating the behavioral and mechanistic effects of solvent abuse. In research with animal models of inhalant abuse, NMDA, GABA(A), glycine, nicotine, and 5HT(3) receptors appear to be important targets of action for several abused solvents with emerging evidence suggesting that other receptor subtypes and nerve membrane ion channels may be involved as well. The behavioral effects vary in magnitude and duration among the solvents investigated. The behavioral effects of acute and chronic inhalant abuse include motor impairment, alterations in spontaneous motor activity, anticonvulsant effects, anxiolytic effects, sensory effects, and effects on learning, memory and operant behavior (e.g., response rates and discriminative stimulus effects). In addition, repeated exposure to these solvents may produce tolerance, dependence and/or sensitization to these effects.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Wayne State University, 5057 Woodward, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
13
|
Chan MH, Chen HH. Toluene exposure increases aminophylline-induced seizure susceptibility in mice. Toxicol Appl Pharmacol 2003; 193:303-8. [PMID: 14644630 DOI: 10.1016/j.taap.2003.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of toluene on the sensitivity to seizures induced by aminophylline were investigated. Mice were pretreated with an ip injection of corn oil or toluene (100-500 mg/kg) followed by a timed intravenous infusion of aminophylline at various time intervals to assess the seizure thresholds and lethal doses. Toluene increased seizure susceptibility to aminophylline in a dose- and time-dependent manner. Toluene-induced enhancement of seizure susceptibility to aminophylline occurred as early as 30 min and persisted for at least 3 days after a single administration of toluene (500 mg/kg). Treatment of benzaldehyde, one of toluene's metabolites, also showed an increase in the susceptibility to aminophylline. The enhancing effect was also observed in caffeine-induced seizures 1 h, but not 1 day after toluene treatment. These results suggest that individuals with toluene exposure may increase the risk for convulsive and even lethal complications associated with the therapeutic use of aminophylline.
Collapse
Affiliation(s)
- Ming-Huan Chan
- Department of Pharmacology, Tzu Chi University, Hualien, Taiwan
| | | |
Collapse
|
14
|
Cruz SL, Orta-Salazar G, Gauthereau MY, Millan-Perez Peña L, Salinas-Stefanón EM. Inhibition of cardiac sodium currents by toluene exposure. Br J Pharmacol 2003; 140:653-60. [PMID: 14534149 PMCID: PMC1574070 DOI: 10.1038/sj.bjp.0705481] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/24/2003] [Indexed: 11/09/2022] Open
Abstract
Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 microm (confidence limits: 141-407 microm). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i). the shape of the I-V curves; (ii). the reversal potential of Na+; and (iii). the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 microm toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, I.P.N. Calzada de los Tenorios, # 235, Col. Granjas Coapa, DF 14330, México
| | - Gerardo Orta-Salazar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ave. 14 Sur # 6301, C.U. San Manuel, Puebla 72501, México
| | - Marcia Y Gauthereau
- Departamento de Farmacobiología, Cinvestav, I.P.N. Calzada de los Tenorios, # 235, Col. Granjas Coapa, DF 14330, México
| | - Lourdes Millan-Perez Peña
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ave. 14 Sur # 6301, C.U. San Manuel, Puebla 72501, México
| | - Eduardo M Salinas-Stefanón
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Ave. 14 Sur # 6301, C.U. San Manuel, Puebla 72501, México
| |
Collapse
|
15
|
Meulenberg CJW, Vijverberg HPM. Selective inhibition of gamma-aminobutyric acid type A receptors in human IMR-32 cells by low concentrations of toluene. Toxicology 2003; 190:243-8. [PMID: 12927378 DOI: 10.1016/s0300-483x(03)00190-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effects of the neurotoxic organic solvent toluene on human neuronal nicotinic acetylcholine (nACh) and gamma-aminobutyric acid type A (GABA(A)) neurotransmitter receptors were investigated in whole-cell voltage-clamped IMR-32 neuroblastoma cells. Ion currents evoked by near maximum effective concentrations of 1 mM acetylcholine (ACh) and 1 mM gamma-aminobutyric acid (GABA) are inhibited by toluene in a concentration-dependent way. Concentration-effect curves of toluene yield IC(50) values of 276+/-26 and 39+/-6 microM and slope factors of 1.4+/-0.2 and 0.8+/-0.1 for inhibition of the ACh- and GABA-induced ion currents, respectively. The results demonstrate the selective inhibition of human GABA(A) receptors by toluene at concentrations comparable with brain concentrations associated with occupational exposure.
Collapse
Affiliation(s)
- Cécil J W Meulenberg
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80176, NL-3508 TD Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Riegel AC, Ali SF, French ED. Toluene-induced locomotor activity is blocked by 6-hydroxydopamine lesions of the nucleus accumbens and the mGluR2/3 agonist LY379268. Neuropsychopharmacology 2003; 28:1440-7. [PMID: 12784113 DOI: 10.1038/sj.npp.1300193] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The abuse of volatile inhalants remains a prominent, yet poorly understood, form of substance abuse among youth. Nevertheless, the identification of a mechanism underlying the reinforcing properties of inhalants has been hampered by the lack of a clearly identifiable neural substrate upon which these chemicals act. One ingredient that is common to many abused inhalants is toluene, an organic solvent that is self-administered by nonhuman primates and rodents. Most drugs of abuse have been found to elicit forward locomotion in rats, an effect owing to the activation of mesoaccumbal dopamine (DA) pathways. Thus, the present study was undertaken using two different approaches to determine whether toluene-induced locomotor hyperactivity is also ultimately dependent upon DA neurotransmission in the mesolimbic nucleus accumbens (NAC). Here we report on the effects of 6-hydroxydopamine (6-OHDA) lesions of the NAC or pretreatment with the metabotropic mGlu2/3 receptor agonist LY379268 on toluene-induced locomotor activity. Both procedures, which are known to alter neurotransmission within the NAC, significantly attenuated toluene's locomotor stimulatory effects. These results provide strong support for a central mechanism of action of inhalants, which in the past has been more typically attributed to general nonspecific mechanisms throughout the brain. Moreover, as with other drugs of abuse, the NAC may be the final common pathway subserving toluene's abuse liability.
Collapse
Affiliation(s)
- A C Riegel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA
| | | | | |
Collapse
|