1
|
Dong X, Chen J, Xue L, Al‐hawwas M. Treadmill training improves cognitive function by increasing IGF2 targeted downregulation of miRNA-483. IBRAIN 2022; 8:264-275. [PMID: 37786740 PMCID: PMC10529000 DOI: 10.1002/ibra.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/04/2023]
Abstract
Optimal exercise can promote the development of cognitive functions. Nevertheless, mechanisms that elicit these positive effects of exercise still need to be elucidated. Insulin-like growth factor 2 (IGF2) is known to act as a potent enhancer of memory and cognitive functions, whereas the mechanism by which IGF2 regulates cognitive functions in terms of moderate treadmill exercise remains largely vague. In the study, rats were subjected to low-, moderate-, and high-intensity treadmill training for 6 weeks. Then, the Morris water maze test was used to investigate spatial learning and memory ability in rats subjected to treadmill exercises of different intensities. Subsequently, gene chip and bioinformatics analyses were used to explore IGF2 and predict target microRNAs (miRNAs). Quantitative real-time polymerase chain reaction, western blot, and immunofluorescence analysis were performed to detect the levels of IGF2. Furthermore, IGF2-small interfering RNA, the miRNA-483-mimic, and the miRNA-483-inhibitor were transfected to determine the role of IGF2 and miRNA-483 in the growth of hippocampal neurons. The results of the Morris water maze test showed that moderate-intensity treadmill training enhanced cognitive functions; meanwhile, the expression of IGF2 was significantly upregulated in the hippocampus after moderate-intensity treadmill exercise. From databases, miRNA-483 was screened and predicted as the target gene of IGF2. Moreover, silencing IGF2 inhibited neurite growth in the hippocampus of rats, the miRNA-483-inhibitor ameliorated silencing IGF2 induced impairment of hippocampal neurons. These findings suggested that treadmill training could enhance cognitive functions, wherein the underlying mechanism involved an increase in the expression of IGF2 and downregulation of miRNA-483.
Collapse
Affiliation(s)
- Xiu‐Juan Dong
- College of Physical EducationHainan Normal UniversityHaikouHainanChina
| | - Jun‐Jie Chen
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Lu‐Lu Xue
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Mohammed Al‐hawwas
- School of Pharmacy and Medical Sciences, Faculty of Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Coulibaly SM, Mesfioui A, Berkiks I, Ennaciri A, Chahirou Y, Diagana Y, Ouichou A, El Midaoui A, El Hessni A. Effects of the Methyl Donors Supplementation on Hippocampal Oxidative Stress, Depression and Anxiety in Chronically High Fructose-treated Rats. Neuroscience 2021; 476:1-11. [PMID: 34543673 DOI: 10.1016/j.neuroscience.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Evidence suggests that oxidative stress plays an important role in the development of anxiety and depression. The aim of the present study was to investigate whether methyl donors supplementation could exert beneficial effects on hippocampal oxidative stress, anxiety and depression in chronically high fructose-treated rats, a new animal model of anxiety and mood disorders. Rats were divided into two groups and treated for 10 weeks as follows: Group 1 represents the control group and Group 2 was treated with 23% fructose. After 10 weeks, the fructose-fed animals were divided into two groups and treated for 8 weeks as follows: Group 2 continued to receive fructose while Group 3 was treated with methyl donors and fructose. High fructose-fed rats showed increases in glucose, triglycerides, total cholesterol as well as in the final body weight and the adipose tissue weight. High fructose induced anxiety- and depression-like behaviors. High fructose caused an increase of the nitrite content and the Malondialdehyde (MDA) levels in the hippocampus tissue in association with an induction of damage in the dorsal hippocampus neurons. The 8-weeks dietary supplementation with methyl donors normalized the depression-like behavior, oxidative stress in the hippocampus, reversed the damage observed in the hippocampal neurons. These findings demonstrate that high fructose induced depression in association with the induction of a hippocampal oxidative stress. The anti-depressive action of methyl donors appears to be associated to their anti-oxidative properties since they normalized the nitrite content and the MDA levels at the hippocampus in the high fructose-fed female rats.
Collapse
Affiliation(s)
- Sidi Mohamed Coulibaly
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Inssaf Berkiks
- Laboratoire Biologie et Santé, FSK Kénitra and Division of Immunology, University of Cape Town Medical School, South Africa
| | - Abdeljabbar Ennaciri
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Yassine Chahirou
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Yacouba Diagana
- Faculté des sciences, Université Noukchott Al Aasriya, Mauritania
| | - Ali Ouichou
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Adil El Midaoui
- Research Team "Biology, Environment and Health", Department of Biology, FST Errachidia, Moulay Ismail University of Meknes, Morocco.
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
3
|
Jiang S, Wu Y, Fang DF, Chen Y. Hypothermic preconditioning but not ketamine reduces oxygen and glucose deprivation induced neuronal injury correlated with downregulation of COX-2 expression in mouse hippocampal slices. J Pharmacol Sci 2018; 137:30-37. [PMID: 29681435 DOI: 10.1016/j.jphs.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/03/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Hypothermic preconditioning is an effective treatment for limiting ischemic injury, but the mechanism is poorly understood. This study was aimed to explore the effect of hypothermic and ketamine preconditioning on oxygen and glucose deprivation (OGD) induced neuronal injury in mouse hippocampal slices, and to investigate its possible mechanism. The population spike (PS) was recorded in the CA1 region of mouse hippocampal slices using extracellular recordings, Na+/K+ ATPase activity in slices was determined by spectrophotometer and the expression of Cyclooxygenase-2 (COX-2) was measured by Western blot. Ten min of OGD induced a poor recovery of PS in slices after reoxygenation. Hypothermic (33 °C) preconditioning delayed the appearance of transient recovery (TR) of PS and improved the recovery amplitude of PS after reoxygenation. Hypothermic preconditioning also decreased the expression of COX-2 and increased Na+/K+ ATPase activity in slices. Pretreatment of ketamine, a non-competitive NMDA receptor antagonist at a subanesthetic dose has no effect on OGD induced neuronal injury. Moreover, the protection of hypothermic preconditioning was not added by ketamine. The downregulation of COX-2 expression and the increase of Na+/K+ ATPase activity may be associated with the effectiveness of hypothermic preconditioning in increasing tolerance to an OGD insult.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China; Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Yong Wu
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - De-Fang Fang
- Department of Anatomy and Physiology, Lianyungang Branch of Traditional Chinese Medicine, Jiangsu Union Technical Institute, Lianyungang, China
| | - Ying Chen
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
4
|
Papatheodoropoulos C. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave–ripple complexes. Neuroscience 2008; 157:495-501. [DOI: 10.1016/j.neuroscience.2008.09.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 11/25/2022]
|
5
|
Xu ZW, Hou B, Li YF, Gao Y, Su ZT, Yang GS, Zhao SF, He FC, Zhang CG. Theophylline attenuates microwave-induced impairment of memory acquisition. Neurosci Lett 2007; 412:129-33. [PMID: 17207928 DOI: 10.1016/j.neulet.2006.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 08/10/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022]
Abstract
Numerous studies have shown that acute microwave exposure causes cognitive deficits in animals, possibly via hyperthermia, but the biological effect of microwave exposure on memory processing is still unknown. The release of adenosine is demonstrated to be a general way for the cells to respond to metabolically stressful conditions such as hypoxia and ischemia. The present study aimed to examine whether adenosine mediates biological effects of microwave exposure on memory processing using a continuous multiple-trial inhibitory avoidance task. Results demonstrated that microwave exposure for 20 min before training impaired memory acquisition and retention performance in mice, assessed by the number of training trials and by latency to enter the dark compartment. The mice exposed to microwave radiation showed a dose-dependent hyperthermia. Moreover, the cell numbers of hippocampus were decreased in the mice receiving microwave exposure at an average power density of 50 mW/cm(2), indicating the anatomical correlation to hippocampal-amygdaloid structures corresponding with the memory disrupt of the mice. Administration of theophylline, a nonspecific adenosine receptor antagonist, 30 min before microwave exposure, completely antagonized the impairment of inhibitory avoidance acquisition but not retention. These results suggest that the adenosine regulation pathway was partially involved in microwave-induced impairment of inhibitory avoidance memory.
Collapse
Affiliation(s)
- Zhi-Wei Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cao R, Hasuo H, Ooba S, Akasu T, Zhang X. Facilitation of glutamatergic synaptic transmission in hippocampal CA1 area of rats with traumatic brain injury. Neurosci Lett 2006; 401:136-41. [PMID: 16574323 DOI: 10.1016/j.neulet.2006.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 11/25/2022]
Abstract
We investigated the effects of traumatic brain injury (TBI) on the glutamatergic synaptic transmission in the hippocampal CA1 area. A moderate impact (3.8-4.8atm) was applied onto the left parietal cerebral cortex by a fluid percussion injury (FPI) device. Conventional intracellular recordings were made from hippocampal CA1 pyramidal neurons in vitro. Electrophysiological properties of these neurons were compared between three groups (control, FPI-ipsilateral, and FPI-contralateral). The excitability of postsynaptic membrane of CA1 pyramidal neurons was not altered by the moderate FPI; however, the evoked glutamatergic excitatory synaptic transmission in the pyramidal neurons of post-FPI-CA1 was enhanced. Paired-pulse facilitation (PPF) was significantly suppressed in both the FPI-ipsilateral and FPI-contralateral groups and the frequencies of mEPSPs in neurons from the bilateral FPI groups were greater than the frequency in the control group. These results suggest that the glutamatergic synaptic transmission in the hipppocampal CA1 area is facilitated through presynaptic mechanisms after TBI.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Neurosurgery, Neurosurgical Institute of PLA, Xijing Hospital, Fourth Military Medical University, No. 15 West Changle Road, Xi'an Shaanxi 710032, PR China
| | | | | | | | | |
Collapse
|
7
|
Henrich-Noack P, Gorkin AG, Krautwald K, Pforte C, Schröder UH, Reymann KG. Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus. Neuroscience 2005; 133:571-81. [PMID: 15885918 DOI: 10.1016/j.neuroscience.2005.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 11/25/2022]
Abstract
This study aimed at investigating and influencing the basic electrophysiological functions and neuronal plasticity in the dentate gyrus in freely moving rats at several time-points after global ischemia. Although neuronal death was induced selectively in the cornu ammonis, subfield 1 (CA1)-region of the hippocampus, we found an additional loss of the population spike in the dentate gyrus after stimulation of the perforant path. Input/output-measurements revealed that as early as 1 day post-ischemia population spike generation in the granular cell layer is greatly decreased when compared with pre-ischemic values and to sham-operated animals, despite an apparently intact morphology of granular cells as evidenced by Nissl-staining. In contrast, the synaptic transmission (excitatory postsynaptic field potential) shows no significant difference when comparing values before and after ischemia and ischemic and sham-operated animals. Despite reduced output function, indicated by very small population spike amplitudes, long lasting potentiation can be induced 10 days after ischemia. Surprisingly, even "silent" populations of neurons, which appear selectively post-ischemia and do not show any evoked population spike, can be re-activated by tetanisation which is followed by a normal appearing long-term potentiation. However, this functional recovery seems to be partial and transient under current conditions: population spike-values do not reach pre-ischemic values and return to the low pre-tetanic baseline values the next day. Electrophysiological measurements ex vivo after ischemia indicate that the neuronal dysfunction in the dentate gyrus is not due to locally destroyed structures but that the activity of granular cells is merely suppressed only under in vivo conditions. In summary, global ischemia leaves a neighboring morphologically intact input area, functionally impaired. However, neuronal function can be partially regenerated by electrophysiological tetanic stimulation.
Collapse
Affiliation(s)
- P Henrich-Noack
- Research Institute for Applied Neurosciences, FAN gGmbH, ZENIT, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|