1
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
2
|
Muñoz-Delgado E, Montenegro MF, Campoy FJ, Moral-Naranjo MT, Cabezas-Herrera J, Kovacs G, Vidal CJ. Expression of cholinesterases in human kidney and its variation in renal cell carcinoma types. FEBS J 2010; 277:4519-29. [PMID: 20883446 DOI: 10.1111/j.1742-4658.2010.07861.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite the aberrant expression of cholinesterases in tumours, the question of their possible contribution to tumorigenesis remains unsolved. The identification in kidney of a cholinergic system has paved the way to functional studies, but details on renal cholinesterases are still lacking. To fill the gap and to determine whether cholinesterases are abnormally expressed in renal tumours, paired pieces of normal kidney and renal cell carcinomas (RCCs) were compared for cholinesterase activity and mRNA levels. In studies with papillary RCC (pRCC), conventional RCC, chromophobe RCC, and renal oncocytoma, acetylcholinesterase activity increased in pRCC (3.92 ± 3.01 mU·mg(-1), P = 0.031) and conventional RCC (2.64 ± 1.49 mU·mg(-1), P = 0.047) with respect to their controls (1.52 ± 0.92 and 1.57 ± 0.44 mU·mg(-1)). Butyrylcholinesterase activity increased in pRCC (5.12 ± 2.61 versus 2.73 ± 1.15 mU·mg(-1), P = 0.031). Glycosylphosphatidylinositol-linked acetylcholinesterase dimers and hydrophilic butyrylcholinesterase tetramers predominated in control and cancerous kidney. Acetylcholinesterase mRNAs with exons E1c and E1e, 3'-alternative T, H and R acetylcholinesterase mRNAs and butyrylcholinesterase mRNA were identified in kidney. The levels of acetylcholinesterase and butyrylcholinesterase mRNAs were nearly 1000-fold lower in human kidney than in colon. Whereas kidney and renal tumours showed comparable levels of acetylcholinesterase mRNA, the content of butyrylcholinesterase mRNA was increased 10-fold in pRCC. The presence of acetylcholinesterase and butyrylcholinesterase mRNAs in kidney supports their synthesis in the organ itself, and the prevalence of glycosylphosphatidylinositol-anchored acetylcholinesterase explains the splicing to acetylcholinesterase-H mRNA. The consequences of butyrylcholinesterase upregulation for pRCC growth are discussed.
Collapse
|
3
|
Muñoz-Delgado E, Montenegro MF, Morote-García JC, Campoy FJ, Cabezas-Herrera J, Kovacs G, Vidal CJ. The expression of cholinesterases in human renal tumours varies according to their histological types. Chem Biol Interact 2008; 175:340-2. [PMID: 18482720 DOI: 10.1016/j.cbi.2008.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
The change in the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in neoplastic colon and lung prompted us to study the possible effect of cancer on the expression of cholinesterases (ChEs) in kidney. Samples of papillary renal cell carcinoma (pRCC), conventional RCC (cRCC), chromophobe RCC (chRCC) and renal oncocytoma (RON), beside adjacent non-cancerous tissues, were analyzed. In pRCC both AChE and BuChE activities were statistically increased; in cRCC and chRCC only AChE activity increased and in RON neither AChE nor BuChE activities were affected. Abundant amphiphilic AChE dimers (G(2)(A)) and fewer monomers (G(1)(A)) were identified in healthy kidney as well as in all tumour classes. Incubation with PIPLC revealed glycosylphosphatidylinositol in AChE forms. BuChE is distributed between principal G(4)(H), fewer G(1)(H), and much fewer G(4)(A) and G(1)(A) species. RT-PCR showed similar amounts of AChE-H, AChE-T and BuChE mRNAs in healthy kidney. Their levels increased in pRCC but not in the other tumour types. The data support the idea that, as in lung tumours, in renal carcinomas expression of ChE mRNAs, biosynthesis of molecular components and level of enzyme activity change according to the specific kind of cell from which tumours arise.
Collapse
Affiliation(s)
- Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
Montenegro MF, Nieto-Cerón S, Ruiz-Espejo F, Páez de la Cadena M, Rodríguez-Berrocal FJ, Vidal CJ. Cholinesterase activity and enzyme components in healthy and cancerous human colorectal sections. Chem Biol Interact 2006; 157-158:429-30. [PMID: 16429578 DOI: 10.1016/j.cbi.2005.10.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of cancer on acetyl- (AChE) and butyrylcholinesterase (BuChE) activities of human gut was investigated. ChE activity was measured in 55 paired samples of healthy and malignant colon, sigmoid colon and rectum. Cancer decreases the mean AChE activity value from 2.17 +/- 1.07 to 1.40 +/- 0.89 mU/mg (p < 0.001), and BuChE activity from 4.16 +/- 2.41 to 1.65 +/- 0.87 mU/mg (p < 0.001). AChE monomers and dimers (light forms), and less asymmetric and tetrameric variants (heavy forms) were identified in gut. The proportions of the heavy species dropped in malignant colon. Since muscarinic stimulation is needed for human colon cancer cell proliferation, the fall of ChE activity in neoplastic colon, with the increased availability of acetylcholine, may increase tumour growth.
Collapse
|
5
|
Martínez-Moreno P, Nieto-Cerón S, Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martínez-Hernández P, Rodríguez-López JN, Vidal CJ, Cabezas-Herrera J. Cholinesterase activity of human lung tumours varies according to their histological classification. Carcinogenesis 2005; 27:429-36. [PMID: 16272577 DOI: 10.1093/carcin/bgi250] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The probable involvement of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in cancer and the relevance of cholinergic responses for lung cancer growth prompted us to study whether cholinesterase activity of human lung is altered by malignancy. Surgical pieces of non-small lung carcinomas (NSLC) and their adjacent non-cancerous tissues (ANCT) were analysed for AChE and BChE activities. AChE activity in adenocarcinoma (AC) was 7.80 +/- 5.59 nmol of substrate hydrolysed per min and per mg of protein (mU/mg), the same as in their ANCT (8.83 +/- 4.72 mU/mg; P = 0.823); in large cell carcinoma (LCC), 7.52 +/- 3.32 mU/mg, approximately 50% less than in their ANCT (15.39 +/- 5.66 mU/mg; P = 0.043); and in squamous cell carcinoma (SCC), 1.39 +/- 0.58 mU/mg, 80% less than in ANCT (6.08 +/- 2.88 mU/mg; P = 0.003). BChE activity was 5.85 +/- 3.20 mU/mg in AC and 9.56 +/- 3.38 mU/mg in ANCT (P = 0.022); 2.94 +/- 2.01 mU/mg in LCC and 6.50 +/- 6.63 mU/mg in ANCT (P = 0.068); and 4.49 +/- 2.30 mU/mg in SCC and ANCT 6.56 +/- 4.09 mU/mg (P = 0.026). Abundant AChE dimers and fewer monomers were identified in lung and, although their distribution was unaffected by cancer, the binding with concanavalin A revealed changes in AChE glycosylation between SCC and their ANCT. The fall in BChE activity affected all molecules, with a strong decrease of the amphiphilic tetramers. Western blotting revealed protein bands with the expected mass of the principal AChE subunits, and the deeper intensity of the protein signal in SCC than in healthy lung, in lanes loaded with the same units of AChE activity, supported an augment in the amount of AChE protein/unit of AChE activity in SCC. The increased availability of acetylcholine in neoplastic lung, resulting from the fall of cholinesterase activity, may enhance cholinergic signalling and contribute to tumour progression.
Collapse
Affiliation(s)
- Pedro Martínez-Moreno
- Servicio de Análisis Clínicos and Cirugía Torácica, University Hospital Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, El Palmar, E-30120, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Although the involvement of cholinesterases (ChEs) in the removal of acetylcholine (ACh) at cholinergic synapses is firmly established, there is evidence to suggest that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) take part in several cellular processes. The early expression of ChE genes during embryonic development and their role in morphogenesis and apoptosis have been explained on the basis of the non-cholinergic actions of ChEs. In addition, the effects of AChE and BuChE, their inhibitors and antisense oligonucleotides in proliferating cellular systems, together with the mitogenic actions of ACh, support a role for ChEs in cell cycle control. The anomalous expression of ChEs may increase cell proliferation and contribute to cancer growth or development. The aim of this report is to compile the available information on ChEs in cancerous tissues in order to stimulating the research to clarify the molecular mechanisms by which ChEs may participate in cancer. Future investigations may throw light into this intriguing issue which will be of benefit to humankind.
Collapse
Affiliation(s)
- Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Murcia, Spain.
| |
Collapse
|
7
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Breast cancer metastasis alters acetylcholinesterase activity and the composition of enzyme forms in axillary lymph nodes. Breast Cancer Res Treat 2003; 80:105-14. [PMID: 12889604 DOI: 10.1023/a:1024461108704] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of the probable involvement of cholinesterases (ChEs) in tumorigenesis, this research was addressed to ascertaining whether breast cancer metastasis alters the content of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE) in axillary lymph nodes (LN). ChE activity was assayed in nine normal (NLN) and seven metastasis-bearing nodes (MLN) from women. AChE and BuChE forms were characterised by sedimentation analyses, hydrophobic chromatography and western blotting. The origin of ChEs in LN was studied by lectin interaction. AChE activity dropped from 21.6 mU/mg (nmol of the substrate hydrolysed per minute and per milligram protein) in NLN to 3.8 mU/mg in MLN (p < 0.001), while BuChE activity (3.6 mU/mg) was little affected. NLN contained globular amphiphilic AChE dimers (G2A, 35%), monomers (G1A, 30%), hydrophilic tetramers (G4H, 8%), and asymmetric species (A4, 23%, and A8, 4%); MLN displayed only G2A (65%) and G1A (35%) AChE forms. NLN and MLN contained G4H (79%), G4A (7%), and G1H (14%) BuChE components. Neither the binding of ChE forms with lectins and antibodies nor the subunit size were altered by metastasis. The higher level of AChE in NLN than in brain and the specific pattern of AChE forms in NLN support its role in immunity. The different profile of AChE forms in NLN and MLN may be useful for diagnosis.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Vidal CJ. Cholinesterase activity and acetylcholinesterase glycosylation are altered in human breast cancer. Breast Cancer Res Treat 2002; 72:11-22. [PMID: 12000217 DOI: 10.1023/a:1014904701723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increasing evidence supports the involvement of cholinesterases in tumorigenesis. Several tumour cells show ChE activity, while the acetyl- (AChE) and butyrylcholinesterase (BuChE) genes are amplified in leukemias, ovarian carcinoma and other cancers. ChE activity was measured in 31 samples of tumoral breast (TB) and 20 of normal breast (NB). Despite the wide variations observed, BuChE predominated over AChE both in TB and NB. The mean AChE activity in NB was 1.61 nmol of the substrate hydrolysed per minute and per miligram protein (mU/mg), which rose to 3.09 mU/mg in TB (p = 0.041). The BuChE activity dropped from 5.24 mU/mg in NB to 3.39 mU/mg in TB (p = 0.002). Glycolipid-linked AChE dimers and monomers and hydrophilic BuChE tetramers and monomers were identified in NB and TB, and their proportions were unmodified by the neoplasia. The amount of AChE forms reacting with wheat germ agglutinin (WGA) decreased in TB while that of BuChE species was unaffected, demonstrating that the glycosylation of AChE was altered in TB. The binding of AChE and BuChE with antibodies was unaffected by the neoplasia. The difference in lectin reactivity between erythrocyte and breast AChE, the lack of AChE in blood plasma, and the finding of monomeric BuChE in breast but not in plasma suggest that breast epithelial cells produce AChE for membrane attachment and hydrophilic BuChE for secretion. Several reasons are provided to explain the altered expression of ChEs in breast cancer.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Spain
| | | | | | | | | |
Collapse
|
9
|
García-Ayllón MS, Sáez-Valero J, Muñoz-Delgado E, Vidal CJ. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma. Neuroscience 2002; 107:199-208. [PMID: 11731094 DOI: 10.1016/s0306-4522(01)00355-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain and non-brain tumors contain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) transcripts and enzyme activity. AChE and BuChE occur in tissues as a set of molecular components, whose distribution in a cyst fluid from a human astrocytoma we investigated. The fluid displayed high BuChE and low AChE activities. Three types of cholinesterase (ChE) tetramers were identified in the fluid by means of sedimentation analyses and assays with specific inhibitors, and their sedimentation coefficients were 11.7S (ChE-I), 11.1S (ChE-II), and 10.5S (ChE-III). ChE-I was unretained, ChE-II was weakly retained and ChE-III was adsorbed to edrophonium-agarose, confirming the AChE nature of the latter. ChE-I and ChE-II tetramers contained BuChE subunits as shown by their binding with an antiserum against BuChE. The ChE activity of the immunocomplexes made with ChE-II and anti-BuChE antibodies decreased with the AChE inhibitor BW284c51, revealing that ChE-II was made of AChE and BuChE subunits, in contrast to ChE-I, which only contained BuChE subunits. The binding of an anti-AChE antibody (AE1) to ChE-II and ChE-III, but not to ChE-I, demonstrated the hybrid composition of ChE-II. A substantial fraction of the AChE tetramers and dimers of astrocytomas and oligodendrogliomas bound both to anti-AChE and anti-BuChE antibodies, which revealed a mixed composition of AChE and BuChE subunits in them. The AChE components of brain, meningiomas and neurinomas were only recognized by AE1. In conclusion, our results demonstrate that aberrant ChE oligomers consisting of AChE and BuChE subunits are generated in astrocytomatous cyst and gliomas but not in brain, meningiomas or neurinomas.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|