1
|
Zhang J, Buegger F, Albert A, Ghirardo A, Winkler B, Schnitzler JP, Hebelstrup KH, Durner J, Lindermayr C. Phytoglobin overexpression promotes barley growth in the presence of enhanced level of atmospheric nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4521-4537. [PMID: 31245808 PMCID: PMC6736386 DOI: 10.1093/jxb/erz249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
To investigate the effect of high atmospheric NO concentrations on crop plants and the role of phytoglobins under these conditions, we performed a long-term study on barley 'Golden Promise' wild type (WT), class 1 phytoglobin knockdown (HvPgb1.1-) and class 1 phytoglobin overexpression (HvPgb1.1+) lines. Plants were cultivated with nitrogen-free nutrient solution during the entire growth period and were fumigated with different NO concentration (ambient, 800, 1500, and 3000 ppb). Analysis of fresh weight, stem number, chlorophyll content, and effective quantum yield of PSII showed that NO fumigation promoted plant growth and tillering significantly in the HvPgb1.1+ line. After 80 d of NO fumigation, dry matter weight, spikes number, kernel number, and plant kernel weight were significantly increased in HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased in WT and HvPgb1.1- plants the higher the NO level. Application of atmospheric 15NO and 15NO2 demonstrated NO specificity of phytoglobins. 15N from 15NO could be detected in RNA, DNA, and proteins of barley leaves and the 15N levels were significantly higher in HvPgb1.1+ plants in comparison with HvPgb1.1- and WT plants. Our results demonstrate that overexpression of phytoglobins allows plants to more efficiently use atmospheric NO as N source.
Collapse
Affiliation(s)
- Jiangli Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- Correspondence:
| |
Collapse
|
2
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
3
|
Dumont E, Jokipii-Lukkari S, Parkash V, Vuosku J, Sundström R, Nymalm Y, Sutela S, Taskinen K, Kallio PT, Salminen TA, Häggman H. Evolution, three-dimensional model and localization of truncated hemoglobin PttTrHb of hybrid aspen. PLoS One 2014; 9:e88573. [PMID: 24520401 PMCID: PMC3919811 DOI: 10.1371/journal.pone.0088573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Thus far, research on plant hemoglobins (Hbs) has mainly concentrated on symbiotic and non-symbiotic Hbs, and information on truncated Hbs (TrHbs) is scarce. The aim of this study was to examine the origin, structure and localization of the truncated Hb (PttTrHb) of hybrid aspen (Populus tremula L. × tremuloides Michx.), the model system of tree biology. Additionally, we studied the PttTrHb expression in relation to non-symbiotic class1 Hb gene (PttHb1) using RNAi-silenced hybrid aspen lines. Both the phylogenetic analysis and the three-dimensional (3D) model of PttTrHb supported the view that plant TrHbs evolved vertically from a bacterial TrHb. The 3D model suggested that PttTrHb adopts a 2-on-2 sandwich of α-helices and has a Bacillus subtilis -like ligand-binding pocket in which E11Gln and B10Tyr form hydrogen bonds to a ligand. However, due to differences in tunnel cavity and gate residue (E7Ala), it might not show similar ligand-binding kinetics as in Bs-HbO (E7Thr). The immunolocalization showed that PttTrHb protein was present in roots, stems as well as leaves of in vitro -grown hybrid aspens. In mature organs, PttTrHb was predominantly found in the vascular bundles and specifically at the site of lateral root formation, overlapping consistently with areas of nitric oxide (NO) production in plants. Furthermore, the NO donor sodium nitroprusside treatment increased the amount of PttTrHb in stems. The observed PttTrHb localization suggests that PttTrHb plays a role in the NO metabolism.
Collapse
Affiliation(s)
- Estelle Dumont
- Department of Biology, University of Oulu, Oulu, Finland
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Aix-Marseille Université, Marseille, France
| | | | - Vimal Parkash
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jaana Vuosku
- Department of Biology, University of Oulu, Oulu, Finland
| | - Robin Sundström
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Yvonne Nymalm
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Suvi Sutela
- Department of Biology, University of Oulu, Oulu, Finland
| | | | | | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Hely Häggman
- Department of Biology, University of Oulu, Oulu, Finland
| |
Collapse
|
4
|
Hill RD. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging? AOB PLANTS 2012; 2012:pls004. [PMID: 22479675 PMCID: PMC3292739 DOI: 10.1093/aobpla/pls004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/25/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. PRINCIPAL RESULTS Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. CONCLUSIONS Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.
Collapse
|
5
|
Garrocho-Villegas V, Bustos-Rivera G, Gough J, Vinogradov SN, Arredondo-Peter R. Expression and in silico structural analysis of a rice (Oryza sativa) hemoglobin 5. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:855-9. [PMID: 18586507 DOI: 10.1016/j.plaphy.2008.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Indexed: 04/30/2023]
Abstract
This work reports the analysis of an additional hemoglobin (hb) gene copy, hb5, in the genome of rice. The amino acid sequence of Hb5 differs from the previously determined rice Hbs 1-4 in missing 11 residues in helix E. Transcripts of hb5 were found to be ubiquitous in rice organs, and hormone- and stress-response promoters exist upstream of the rice hb5 gene. Furthermore, the modeled structure of Hb5 based on the known crystal structure of rice Hb1 is unusual in that the putative distal His is distant from the heme Fe. This observation suggests that Hb5 binds and releases O(2) easily and thus that it functions as an O(2)-carrier or in some aspects of the O(2) metabolism.
Collapse
Affiliation(s)
- Verónica Garrocho-Villegas
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
6
|
Parent C, Berger A, Folzer H, Dat J, Crevècoeur M, Badot PM, Capelli N. A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. THE NEW PHYTOLOGIST 2007; 177:142-154. [PMID: 17986182 DOI: 10.1111/j.1469-8137.2007.02250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study presents the isolation and characterization of a novel nonsymbiotic Hb gene from sessile oak (Quercus petraea) seedlings, herein designated QpHb1. The cellular and tissue expression of QpHb1 was analysed by Northern blotting and in situ hybridization. The encoded protein was predicted to consist of 161 amino acid residues, and shares 71 and 51% amino acid sequence identity with the Arabidopsis class 1 and 2 nonsymbiotic Hb, respectively. Northern blot analysis revealed that QpHb1 was strongly expressed in roots. Spatial expression analysis of QpHb1 in the root apical region of sessile oak by in situ hybridization indicated that transcripts were mostly abundant in protoxylem cell initials, some cortical cells and the protoderm. In addition, when comparing the expression profile of QpHb1 in sessile and pedunculate oak (Quercus robur), two species with contrasted hypoxia tolerance, the transcript level of QpHb1 rose early in the most flood-tolerant species, pedunculate oak, during root submergence. The spatial-temporal expression of QpHb1 suggests that this gene could participate in perception and signalling during hypoxia.
Collapse
Affiliation(s)
- Claire Parent
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Audrey Berger
- Département de Botanique et Biologie Végétale, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| | - Hélène Folzer
- Institut Méditerranéen d'Ecologie et de Paléoécologie (UMR CNRS 6116), Université Paul Cézanne, Avenue Escadrille Normandie-Niemen, F-13397 Marseille cedex 20, France
| | - James Dat
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Michèle Crevècoeur
- Département de Botanique et Biologie Végétale, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| | - Pierre-Marie Badot
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Nicolas Capelli
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| |
Collapse
|
7
|
Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R. Plant hemoglobins: what we know six decades after their discovery. Gene 2007; 398:78-85. [PMID: 17540516 DOI: 10.1016/j.gene.2007.01.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
This review describes contributions to the study of plant hemoglobins (Hbs) from a historical perspective with emphasis on non-symbiotic Hbs (nsHbs). Plant Hbs were first identified in soybean root nodules, are known as leghemoglobins (Lbs) and have been characterized in detail. It is widely accepted that a function of Lbs in nodules is to facilitate the diffusion of O(2) to bacteroids. For many years Hbs could not be identified in plants other than N(2)-fixing legumes, however in the 1980s a Hb was isolated from the nodules of the non-legume dicot plant Parasponia, a hb gene was cloned from the non-nodulating Trema, and Hbs were detected in nodules of actinorhizal plants. Gene expression analysis showed that Trema Hb transcripts exist in non-symbiotic roots. In the 1990s nsHb sequences were also identified in monocot and primitive (bryophyte) plants. In addition to Lbs and nsHbs, Hb sequences that are similar to microbial truncated (2/2) Hbs were also detected in plants. Plant nsHbs have been characterized in detail. These proteins have very high O(2)-affinities because of an extremely low O(2)-dissociation constant. Analysis of rice Hb1 showed that distal His coordinates heme Fe and stabilizes bound O(2); this means that O(2) is not released easily from oxygenated nsHbs. Non-symbiotic hb genes are expressed in specific plant tissues, and overexpress in organs of stressed plants. These observations suggest that nsHbs have functions additional to O(2)-transport, such as to modulate levels of ATP and NO.
Collapse
Affiliation(s)
- Verónica Garrocho-Villegas
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | |
Collapse
|
8
|
Sáenz-Rivera J, Sarath G, Arredondo-Peter R. Modeling the tertiary structure of a maize (Zea mays ssp. mays) non-symbiotic hemoglobin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:891-7. [PMID: 15694283 DOI: 10.1016/j.plaphy.2004.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Accepted: 11/16/2004] [Indexed: 05/01/2023]
Abstract
The tertiary structure of a maize (Zea mays ssp. mays) non-symbiotic hemoglobin (Hbm) was modeled using computer tools and the known tertiary structure of rice Hb1 as a template. This method was tested by predicting the tertiary structure of soybean leghemoglobin a (Lba) using rice Hb1 as a template. The tertiary structures of the predicted and native Lba were similar, indicating that our computer methods could reliably predict the tertiary structures of plant Hbs. We next predicted the tertiary structure of Hbm. Hbm appears to have a long pre-helix A and a large CD-loop. The positions of the distal and proximal His are identical in Hbm and rice Hb1, which suggests that heme-Fe is hexacoordinate in Hbm and that the kinetic properties of Hbm and rice Hb1 are expected to be very similar, i.e. that Hbm has a high O2-affinity. Thermostability analysis showed that Hbm CD-loop is unstable and may provide mobility to amino acids located at the heme pocket for both ligand binding and stabilization and heme-Fe coordination. Analysis of the C-terminal half of Hbm showed the existence of a pocket-like region (the N/C cavity) where interactions with organic molecules or proteins could be possible. Lys K94 protrudes into the N/C cavity, suggesting that K94 may sense the binding of molecules to the N/C cavity. Thus, it is likely that the instability of the CD-loop and the possibility of binding molecules to the N/C cavity are essential for positioning amino acids in the heme pocket and in regulating Hbm activity and function.
Collapse
Affiliation(s)
- Juán Sáenz-Rivera
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|