1
|
Li J, Li H, Liu H, Luo Y. Recent Advances in the Biosynthesis of Natural Sugar Substitutes in Yeast. J Fungi (Basel) 2023; 9:907. [PMID: 37755015 PMCID: PMC10533046 DOI: 10.3390/jof9090907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Natural sugar substitutes are safe, stable, and nearly calorie-free. Thus, they are gradually replacing the traditional high-calorie and artificial sweeteners in the food industry. Currently, the majority of natural sugar substitutes are extracted from plants, which often requires high levels of energy and causes environmental pollution. Recently, biosynthesis via engineered microbial cell factories has emerged as a green alternative for producing natural sugar substitutes. In this review, recent advances in the biosynthesis of natural sugar substitutes in yeasts are summarized. The metabolic engineering approaches reported for the biosynthesis of oligosaccharides, sugar alcohols, glycosides, and rare monosaccharides in various yeast strains are described. Meanwhile, some unresolved challenges in the bioproduction of natural sugar substitutes in yeast are discussed to offer guidance for future engineering.
Collapse
Affiliation(s)
- Jian Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Honghao Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Huayi Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (J.L.); (H.L.); (H.L.)
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| |
Collapse
|
2
|
Xie D, Sun Y, Lei Y. Effect of glucose levels on carbon flow rate, antioxidant status, and enzyme activity of yeast during fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5333-5347. [PMID: 35318660 DOI: 10.1002/jsfa.11887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The physiological metabolism of yeast has a significant impact on the quality of fermentation products. The present study aimed to investigate yeast metabolism in response to a changing glucose content environment, especially in fermentation products, as well as the change of carbon flow rate, antioxidant status, and yeast enzyme activity. RESULTS Yeast in a 0 g L-1 glucose level was subjected to carbon starvation stress, cell growth retardation and cell proliferation was significantly inadequate; in the logarithmic growth stage of yeast, at a 30 g L-1 glucose level, the carbon source mainly flowed to tricarboxylic acid cycle and pentose phosphate metabolism, cell division, proliferation, and increased cell growth. In later logarithmic growth period and stable period, carbon flowed into glycerol and trehalose metabolism, to cope with the environmental stress; yeast in 60 and 150 g L-1 glucose levels faced high glucose stress at the beginning, the content of reactive oxygen increased, malondialdehyde content increased, cell damage was reduced through the regulation of superoxide dismutase and catalase enzyme activities, and most of the carbon flowed into the metabolic pathway of ethanol, glycerol, and trehalose to cope with high glucose stress, the pentose phosphate pathway showed a large late influx, and NADPH also started to increase rapidly after 24 h. CONCLUSION Yeast was stressed in a high-sugar environment and ensured the activity of yeast by preferentially increasing the metabolic intensity of trehalose, glycerol, and glycolytic metabolism, weakening tricarboxylic acid metabolism, and first weakening and then increasing pentose phosphate metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingqi Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yanan Lei
- National Engineering Laboratory/Key Laboratory of Henan Province, School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
MAL62 overexpression enhances uridine diphosphoglucose-dependent trehalose synthesis and glycerol metabolism for cryoprotection of baker's yeast in lean dough. Microb Cell Fact 2020; 19:196. [PMID: 33076920 PMCID: PMC7574194 DOI: 10.1186/s12934-020-01454-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Saccharomyces cerevisiae, alpha-glucosidase (maltase) is a key enzyme in maltose metabolism. In addition, the overexpression of the alpha-glucosidase-encoding gene MAL62 has been shown to increase the freezing tolerance of yeast in lean dough. However, its cryoprotection mechanism is still not clear. RESULTS RNA sequencing (RNA-seq) revealed that MAL62 overexpression increased uridine diphosphoglucose (UDPG)-dependent trehalose synthesis. The changes in transcript abundance were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme activity assays. When the UDPG-dependent trehalose synthase activity was abolished, MAL62 overexpression failed to promote the synthesis of intracellular trehalose. Moreover, in strains lacking trehalose synthesis, the cell viability in the late phase of prefermentation freezing coupled with MAL62 overexpression was slightly reduced, which can be explained by the increase in the intracellular glycerol concentration. This result was consistent with the elevated transcription of glycerol synthesis pathway members. CONCLUSIONS The increased freezing tolerance by MAL62 overexpression is mainly achieved by the increased trehalose content via the UDPG-dependent pathway, and glycerol also plays an important role. These findings shed new light on the mechanism of yeast response to freezing in lean bread dough and can help to improve industrial yeast strains.
Collapse
|
4
|
Chakraborty K, Mondal S, Ray S, Samal P, Pradhan B, Chattopadhyay K, Kar MK, Swain P, Sarkar RK. Tissue Tolerance Coupled With Ionic Discrimination Can Potentially Minimize the Energy Cost of Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:265. [PMID: 32269578 PMCID: PMC7109317 DOI: 10.3389/fpls.2020.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 05/15/2023]
Abstract
Salinity is one of the major constraints in rice production. To date, development of salt-tolerant rice cultivar is primarily focused on salt-exclusion strategies, which incur greater energy cost. The present study aimed to evaluate a balancing strategy of ionic discrimination vis-à-vis tissue tolerance, which could potentially minimize the energy cost of salt tolerance in rice. Four rice genotypes, viz., FL478, IR29, Kamini, and AC847, were grown hydroponically and subjected to salt stress equivalent to 12 dS m-1 at early vegetative stage. Different physiological observations (leaf chlorophyll content, chlorophyll fluorescence traits, and tissue Na+ and K+ content) and visual scoring suggested a superior Na+-partitioning strategy operating in FL478. A very low tissue Na+/K+ ratio in the leaves of FL478 after 7 days of stress hinted the existence of selective ion transport mechanism in this genotype. On the contrary, Kamini, an equally salt-tolerant genotype, was found to possess a higher leaf Na+/K+ ratio than does FL478 under similar stress condition. Salt-induced expression of different Na+ and K+ transporters indicated significant upregulation of SOS, HKT, NHX, and HAK groups of transporters in both leaves and roots of FL478, followed by Kamini. The expression of plasma membrane and vacuolar H+ pumps (OsAHA1, OsAHA7, and OsV-ATPase) were also upregulated in these two genotypes. On the other hand, IR29 and AC847 showed greater salt susceptibility owing to excess upward transport of Na+ and eventually died within a few days of stress imposition. But in the "leaf clip" assay, it was found that both IR29 and Kamini had high tissue-tolerance and chlorophyll-retention abilities. On the contrary, FL478, although having higher ionic-discrimination ability, showed the least degree of tissue tolerance as evident from the LC50 score (amount of Na+ required to reduce the initial chlorophyll content to half) of 336 mmol g-1 as against 459 and 424 mmol g-1 for IR29 and Kamini, respectively. Overall, the present study indicated that two components (ionic selectivity and tissue tolerance) of salt tolerance mechanism are distinct in rice. Unique genotypes like Kamini could effectively balance both of these strategies to achieve considerable salt tolerance, perhaps with lesser energy cost.
Collapse
|
5
|
Sun X, Zhang J, Fan ZH, Xiao P, Liu SN, Li RP, Zhu WB, Huang L. MAL62 Overexpression Enhances Freezing Tolerance of Baker's Yeast in Lean Dough by Enhancing Tps1 Activity and Maltose Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8986-8993. [PMID: 31347835 DOI: 10.1021/acs.jafc.9b03790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trehalose plays a crucial role in response to freezing stress in baker's yeast. MAL62, a gene involved in the adenosine diphosphoglucose-dependent trehalose synthesis pathway, can increase trehalose content. However, the difference between MAL62-related trehalose synthesis and traditional uridine diphosphoglucose-dependent trehalose synthesis is not well-understood. MAL62 overexpression showed less effect in enhancing intracellular trehalose compared to TPS1 overexpression. However, MAL62 overexpression elicited trehalose synthesis before fermentation with enhanced maltose metabolism and had a similar effect on cell viability after freezing. Furthermore, MAL62 and TPS1 overexpression in the NTH1 deletion background further strengthened freezing tolerance and improved leavening ability. Our results suggest that the enhancement in freezing tolerance by MAL62 overexpression may involve multiple pathways rather than simply enhancing trehalose synthesis. The results reveal valuable insights into the relationship between maltose metabolism and freezing tolerance and may help to develop better yeast strains for enhancing fermentation characteristics of frozen dough.
Collapse
Affiliation(s)
- Xi Sun
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Jun Zhang
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Zhi-Hua Fan
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Ping Xiao
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Shan-Na Liu
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | - Rui-Peng Li
- Tianjin Engineering Research Center of Agricultural Products Processing , Tianjin 300384 , People's Republic of China
| | | | | |
Collapse
|
6
|
Sun X, Zhang CY, Wu MY, Fan ZH, Liu SN, Zhu WB, Xiao DG. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Microb Cell Fact 2016; 15:54. [PMID: 27039899 PMCID: PMC4819290 DOI: 10.1186/s12934-016-0453-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trehalose is related to several types of stress responses, especially freezing response in baker's yeast (Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better tolerate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry. RESULTS The strain overexpressing MAL62 gene showed increased trehalose content and cell viability after prefermention-freezing and long-term frozen. Deletion of NTH1 in combination of MAL62 overexpression further strengthens freezing tolerance and improves the leavening ability after freezing-thaw stress. CONCLUSIONS The mutants of the industrial baker's yeast with enhanced freezing tolerance and leavening ability in lean dough were developed by genetic engineering. These strains had excellent potential industrial applications.
Collapse
Affiliation(s)
- Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ming-Yue Wu
- Diagreat Biotechnologies., Ltd, Beijing, 101111, People's Republic of China
| | - Zhi-Hua Fan
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Shan-Na Liu
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.,Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin, 300384, People's Republic of China
| | - Wen-Bi Zhu
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
7
|
Cervantes-Chávez JA, Valdés-Santiago L, Bakkeren G, Hurtado-Santiago E, León-Ramírez CG, Esquivel-Naranjo EU, Landeros-Jaime F, Rodríguez-Aza Y, Ruiz-Herrera J. Trehalose is required for stress resistance and virulence of the Basidiomycota plant pathogen Ustilago maydis. MICROBIOLOGY-SGM 2016; 162:1009-1022. [PMID: 27027300 DOI: 10.1099/mic.0.000287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.
Collapse
Affiliation(s)
- José Antonio Cervantes-Chávez
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Laura Valdés-Santiago
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - Guus Bakkeren
- Agriculture & Agri-Food Canada, Summerland Research & Development, BC, Canada
| | - Edda Hurtado-Santiago
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | | | - Edgardo Ulises Esquivel-Naranjo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Fidel Landeros-Jaime
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Yolanda Rodríguez-Aza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| |
Collapse
|
8
|
Vilela LDF, de Araujo VPG, Paredes RDS, Bon EPDS, Torres FAG, Neves BC, Eleutherio ECA. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express 2015; 5:16. [PMID: 25852993 PMCID: PMC4385029 DOI: 10.1186/s13568-015-0102-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 11/10/2022] Open
Abstract
We have recently demonstrated that heterologous expression of a bacterial xylose isomerase gene (xylA) of Burkholderia cenocepacia enabled a laboratorial Saccharomyces cerevisiae strain to ferment xylose anaerobically, without xylitol accumulation. However, the recombinant yeast fermented xylose slowly. In this study, an evolutionary engineering strategy was applied to improve xylose fermentation by the xylA-expressing yeast strain, which involved sequential batch cultivation on xylose. The resulting yeast strain co-fermented glucose and xylose rapidly and almost simultaneously, exhibiting improved ethanol production and productivity. It was also observed that when cells were grown in a medium containing higher glucose concentrations before being transferred to fermentation medium, higher rates of xylose consumption and ethanol production were obtained, demonstrating that xylose utilization was not regulated by catabolic repression. Results obtained by qPCR demonstrate that the efficiency in xylose fermentation showed by the evolved strain is associated, to the increase in the expression of genes HXT2 and TAL1, which code for a low-affinity hexose transporter and transaldolase, respectively. The ethanol productivity obtained after the introduction of only one genetic modification and the submission to a one-stage process of evolutionary engineering was equivalent to those of strains submitted to extensive metabolic and evolutionary engineering, providing solid basis for future applications of this strategy in industrial strains.
Collapse
|
9
|
Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 2014; 11:184-203. [DOI: 10.1016/j.plrev.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
10
|
Arginine mediated purification of trehalose-6-phosphate synthase (TPS) from Candida utilis: Its characterization and regulation. Biochim Biophys Acta Gen Subj 2011; 1810:1346-54. [PMID: 21771638 DOI: 10.1016/j.bbagen.2011.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/15/2011] [Accepted: 06/30/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). METHODS In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC). RESULTS An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37°C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl₂, MgCl₂ and ZnSO₄, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest V(max) and lowest K(m) values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors. GENERAL SIGNIFICANCE Substrate specificity, V(max) and K(m) values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.
Collapse
|
11
|
Li H, Wang HL, Du J, Du G, Zhan JC, Huang WD. Trehalose protects wine yeast against oxidation under thermal stress. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0258-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
da Costa Morato Nery D, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio ECA. The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta Gen Subj 2008; 1780:1408-11. [DOI: 10.1016/j.bbagen.2008.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/06/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
|
13
|
Stobrawa K, Lorenc-Plucińska G. Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 373:157-65. [PMID: 17182084 DOI: 10.1016/j.scitotenv.2006.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/14/2006] [Accepted: 11/14/2006] [Indexed: 05/13/2023]
Abstract
Effects of copper-smelter-related deposition of heavy metals in the soil on carbohydrate metabolism of fine roots of the native European black poplar were investigated in spring and autumn. Total soluble non-structural carbohydrates in fine roots from trees growing in the polluted habitat were lower than in a control site, but this was directly associated only with a lower raffinose concentration. Neither glucose nor fructose concentrations differed significantly between polluted and unpolluted sites. In contrast, the galactose concentration was higher in the presence of heavy metals, especially in autumn. Also the stachyose concentration was higher in the polluted site, but only in autumn, suggesting it could be an alternative way of detoxification of galactose. No difference between control and polluted stands was observed in sucrose concentration. However, estimates of sucrolytic activity revealed markedly higher activities of sucrose synthase (SuSy), soluble acid (AI) and neutral (NI) invertases in the polluted stand than in the control. In contrast, the estimated glycolytic enzyme activities were not affected by the presence of heavy metals in soil.
Collapse
Affiliation(s)
- Krzysztof Stobrawa
- Institute of Dendrology, Polish Academy of Sciences; Parkowa 5, 62-035 Kórnik, Poland.
| | | |
Collapse
|
14
|
Paalme T, Nisamedtinov I, Abner K, Laht TM, Drews M, Pehk T. Application of 13C-[2] - and 13C-[1,2] acetate in metabolic labelling studies of yeast and insect cells. Antonie van Leeuwenhoek 2006; 89:443-57. [PMID: 16779638 DOI: 10.1007/s10482-005-9053-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 10/24/2022]
Abstract
The advantage of using 13C-labelled glucose in metabolic studies is that it is an important carbon and energy source for almost all biotechnologically and medically important organisms. On the other hand, the disadvantage is its relatively high cost in the labelling experiments. Looking for cheaper alternatives we found that 13C-[2] acetate or 13C-[1,2] acetate is a prospective compound for such experiments. Acetate is well incorporated by many organisms, including mammalian and insect cell cultures as preferred source of acetyl-CoA. Our experimental results using 13C NMR demonstrated that acetate was efficiently incorporated into glutamate and alanine secreted by the insect cell culture. Using D-stat culture of Saccharomyces uvarum on glucose/13C-acetate mineral media we demonstrated that the labelling patterns of proteinogenic amino acids can be well predicted on the basis of specific substrate consumption rates using the modified scheme of yeast metabolism and stoichiometric modelling. According to this scheme aspartate and alanine in S. uvarum under the experimental conditions used is synthesised in the mitochondria. Synthesis of alanine in the mitochondria was also demonstrated for Spodoptera frugiperda. For both organisms malic enzyme was also operative. For S. uvarum it was shown that the activity of malic enzyme is sufficient for supporting the mitochondrial biosynthetic reactions with NADPH.
Collapse
Affiliation(s)
- Toomas Paalme
- Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
15
|
Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta Gen Subj 2006; 1760:340-6. [PMID: 16510250 DOI: 10.1016/j.bbagen.2006.01.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/21/2022]
Abstract
Aiming to focus the protective role of the sugar trehalose under oxidative conditions, two sets of Saccharomyces cerevisiae strains, having different profiles of trehalose synthesis, were used. Cells were treated either with a 10% trehalose solution or with a heat treatment (which leads to trehalose accumulation) and then exposed either to menadione (a source of superoxide) or to tert-butylhydroperoxide (TBOOH). According to our results, trehalose markedly increased viability upon exposure to menadione stress, which seems to be correlated with decrease in lipid peroxidation levels. The protective effect of trehalose against oxidative damage produced by menadione was especially efficient under SOD1 deficiency. On the other hand, this sugar does not seem to participate of the mechanism of acquisition of tolerance against TBOOH, since trehalose pretreatment (addition of external trehalose) was not capable of increase cell survival. Therefore, trehalose plays a role in protecting cells, especially membranes, from oxidative injuries. However, this mechanism of defense is dependent on the type of oxidative stress to which cells are submitted.
Collapse
Affiliation(s)
- R S Herdeiro
- Departamento de Bioquímica, Instituto de Química, UFRJ, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
16
|
Voit EO. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J Theor Biol 2003; 223:55-78. [PMID: 12782117 DOI: 10.1016/s0022-5193(03)00072-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The physiological hallmark of heat-shock response in yeast is a rapid, enormous increase in the concentration of trehalose. Normally found in growing yeast cells and other organisms only as traces, trehalose becomes a crucial protector of proteins and membranes against a variety of stresses, including heat, cold, starvation, desiccation, osmotic or oxidative stress, and exposure to toxicants. Trehalose is produced from glucose 6-phosphate and uridine diphosphate glucose in a two-step process, and recycled to glucose by trehalases. Even though the trehalose cycle consists of only a few metabolites and enzymatic steps, its regulatory structure and operation are surprisingly complex. The article begins with a review of experimental observations on the regulation of the trehalose cycle in yeast and proposes a canonical model for its analysis. The first part of this analysis demonstrates the benefits of the various regulatory features by means of controlled comparisons with models of otherwise equivalent pathways lacking these features. The second part elucidates the significance of the expression pattern of the trehalose cycle genes in response to heat shock. Interestingly, the genes contributing to trehalose formation are up-regulated to very different degrees, and even the trehalose degrading trehalases show drastically increased activity during heat-shock response. Again using the method of controlled comparisons, the model provides rationale for the observed pattern of gene expression and reveals benefits of the counterintuitive trehalase up-regulation.
Collapse
Affiliation(s)
- Eberhard O Voit
- Department of Biometry and Epidemiology, Medical University of South Carolina, 303K Cannon Place, 135 Cannon Street, Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Abstract
Glycogen and trehalose are the two glucose stores of yeast cells. The large variations in the cell content of these two compounds in response to different environmental changes indicate that their metabolism is controlled by complex regulatory systems. In this review we present information on the regulation of the activity of the enzymes implicated in the pathways of synthesis and degradation of glycogen and trehalose as well as on the transcriptional control of the genes encoding them. cAMP and the protein kinases Snf1 and Pho85 appear as major actors in this regulation. From a metabolic point of view, glucose-6-phosphate seems the major effector in the net synthesis of glycogen and trehalose. We discuss also the implication of the recently elucidated TOR-dependent nutrient signalling pathway in the control of the yeast glucose stores and its integration in growth and cell division. The unexpected roles of glycogen and trehalose found in the control of glycolytic flux, stress responses and energy stores for the budding process, demonstrate that their presence confers survival and reproductive advantages to the cell. The findings discussed provide for the first time a teleonomic value for the presence of two different glucose stores in the yeast cell.
Collapse
Affiliation(s)
- J François
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 135 Avenue de Rangeuil, 31077 Toulouse Cedex 04, France.
| | | |
Collapse
|
18
|
Plourde-Owobi L, Durner S, Goma G, François J. Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability. Int J Food Microbiol 2000; 55:33-40. [PMID: 10791714 DOI: 10.1016/s0168-1605(00)00210-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Strains of Saccharomyces cerevisiae deleted for TPS1 encoding trehalose-6-phosphate synthase still accumulate trehalose when harbouring a functional MAL locus. We demonstrate that this accumulation results from an active uptake of trehalose present in the 'yeast extract' used to make the enriched culture media and that no accumulation is observed in mineral media. The uptake of trehalose was shown to be mediated by the alpha-glucoside transporter encoded by AGT1, the expression of which is linked to the presence of a functional MAL locus. Deletion of this gene in a MAL+ tps1 mutant abolished trehalose accumulation on a maltose or galactose mineral medium. However, small amounts of disaccharide were still detected in a agt1 tps1 double mutant when the medium was supplemented with 10 g trehalose l(-1), indicating the existence of a non-concentrative low-affinity sugar transporter. The presence of the high-affinity trehalose permease allowed us to investigate the effect of increasing exogenous trehalose from 0 to 10 g(-1) on intracellular accumulation. A maximum of ca. 10% (wt/wt dry cells) trehalose was attained in the presence of only 1 g l(-1) of disaccharide in the medium. The capability to monitor the intracellular content of trehalose by varying its extracellular concentration, independent of genetic alterations of the trehalose metabolic machinery, allowed the remarkable contribution of this molecule in stress tolerance to be demonstrated, as the higher the trehalose content, the longer the cell survival to a severe heat shock and to glucose starvation.
Collapse
Affiliation(s)
- L Plourde-Owobi
- Centre de Bioingénierie Gilbert Durand, UMR-CNRS 5504, LA INRA, Institut National des Sciences Appliquées, Toulouse, France
| | | | | | | |
Collapse
|
19
|
Ferreira JC, Panek AD, de Araujo PS. Inactivation of maltose permease and maltase in sporulating Saccharomyces cerevisiae. Can J Microbiol 2000; 46:383-6. [PMID: 10779876 DOI: 10.1139/w99-136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.
Collapse
Affiliation(s)
- J C Ferreira
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Brasil
| | | | | |
Collapse
|
20
|
Plourde-Owobi L, Durner S, Parrou JL, Wieczorke R, Goma G, François J. AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 1999; 181:3830-2. [PMID: 10368160 PMCID: PMC93863 DOI: 10.1128/jb.181.12.3830-3832.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trehalose content in Saccharomyces cerevisiae can be significantly manipulated by including trehalose at an appropriate level in the growth medium. Its uptake is largely dependent on the expression of AGT1, which encodes an alpha-glucoside transporter. The trehalose found in a tps1 mutant of trehalose synthase may therefore largely reflect its uptake from the enriched medium that was employed.
Collapse
Affiliation(s)
- L Plourde-Owobi
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, LA INRA, Institut National des Sciences Appliquées, 31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
21
|
Zaragoza O, Blazquez MA, Gancedo C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J Bacteriol 1998; 180:3809-15. [PMID: 9683476 PMCID: PMC107363 DOI: 10.1128/jb.180.15.3809-3815.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Accepted: 05/26/1998] [Indexed: 02/08/2023] Open
Abstract
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation.
Collapse
Affiliation(s)
- O Zaragoza
- Instituto de Investigaciones Biomédicas del CSIC, Unidad de Bioquímica y Genética de Levaduras, 28029 Madrid, Spain
| | | | | |
Collapse
|