1
|
Hao X, Reyes Palomares A, Anastácio A, Liu K, Rodriguez-Wallberg KA. Evidence of apoptosis as an early event leading to cyclophosphamide-induced primordial follicle depletion in a prepubertal mouse model. Front Endocrinol (Lausanne) 2024; 15:1322592. [PMID: 39469582 PMCID: PMC11514600 DOI: 10.3389/fendo.2024.1322592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction The mechanisms leading to ovarian primordial follicle depletion following gonadotoxic chemotherapy with cyclophosphamide and other cytotoxic drugs are currently understood through two main explanatory theories: apoptosis and over-activation. Discrepancies between the findings of different studies investigating these mechanisms do not allow to reach a firm conclusion. The heterogeneity of cell types in ovaries and their different degrees of sensitivity to damage, cell-cell interactions, periodical follicle profile differences, model age-dependent differences, and differences of exposure durations of tested drugs may partially explain the discrepancies among studies. Methods This study used intact prepubertal mice ovaries in culture as study model, in which most follicles are primordial follicles. Histological and transcriptional analyses of ovaries exposed to the active metabolite of cyclophosphamide 4-hydroperoxycyclophosphamide (4-HC) were carried out via a time-course experiment at 8, 24, 48, and 72 h. Results 4-HC treated ovaries showed a significant decrease in primordial follicle density at 24 h, along with active DNA damage (TUNEL) and overexpressed apoptosis signals (cleaved-poly ADP ribose polymerase in immunohistochemistry and western blotting). Meanwhile 4-HC treatment significantly up-regulated H2ax, Casp 6, Casp 8, Noxa, and Bax in ovaries, and up-regulated Puma in primordial follicles (FISH). Discussion Our results indicated that cyclophosphamide-induced acute ovarian primordial follicle depletion was mainly related to apoptotic pathways. No evidence of follicle activation was found, neither through changes in the expression of related genes to follicle activation nor in the density of growing follicles. Further validation at protein level in 4-HC-treated prepubertal mice ovaries at 24 h confirmed these observations.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Arturo Reyes Palomares
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Amandine Anastácio
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kenny A. Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Fertility Preservation, BioClinicum, Stockholm, Sweden
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
3
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
5
|
Chen C, Hu X, Ahmad MJ, Niu K, Ye T, Liang A, Yang L. Novel Insight into the Role of Squalene Epoxidase ( SQLE) Gene in Determining Milk Production Traits in Buffalo. Int J Mol Sci 2023; 24:ijms24032436. [PMID: 36768756 PMCID: PMC9916492 DOI: 10.3390/ijms24032436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Squalene epoxidase (SQLE) is one of the rate-limiting enzymes for cholesterol biosynthesis and was highly expressed in the buffalo mammary. The objectives of the present study were to detect the polymorphisms within SQLE in buffalo, the genetic effects of these mutations on milk production traits, and to understand the gene regulatory effects on buffalo mammary epithelial cells (BuMECs). A total of five SNPs were identified by sequencing, g.18858G > A loci were significantly associated with fat yield, and g.22834C > T loci were significantly associated with peak milk yield, milk yield, fat yield, and protein yield. Notably, linkage disequilibrium analysis indicated that 2 SNPs (g.18858G > A and g.22834C > T) formed one haplotype block, which was found to be significantly associated with milk fat yield, fat percentage, and protein yield. Furthermore, expression of SQLE was measured in different tissues of buffalo and was found to be higher in the mammary. Knockdown of SQLE gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis, and significantly downregulated the expression of related genes MYC, PCNA, and P21. In addition, knockdown of the SQLE gene significantly reduces triglyceride concentrations and the signal intensity of oil red O staining. In addition, silencing of SQLE was also found to regulate the synthesis and secretion of β-casein and κ-casein negatively. Furthermore, SQLE knockdown is accompanied by the downregulation of critical genes (RPS6KB1, JAK2, eIF4E, and SREBP1) related to milk fat and protein synthesis. The current study showed the potential of the SQLE gene as a candidate for buffalo milk production traits. It provides a new understanding of the physiological mechanisms underlying buffalo milk production regulation.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangwei Hu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamil Ahmad
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingzhu Ye
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
6
|
Kim JS, Lee HL, Jeong JH, Yoon YE, Lee IR, Kim JM, Wu C, Lee SJ. OR2AT4, an Ectopic Olfactory Receptor, Suppresses Oxidative Stress-Induced Senescence in Human Keratinocytes. Antioxidants (Basel) 2022; 11:2180. [PMID: 36358552 PMCID: PMC9686838 DOI: 10.3390/antiox11112180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/21/2023] Open
Abstract
Olfactory receptors (ORs) are the largest protein superfamily in mammals. Certain ORs are ectopically expressed in extranasal tissues and regulate cell type-specific signal transduction pathways. OR2AT4 is ectopically expressed in skin cells and promotes wound healing and hair growth. As the capacities of wound healing and hair growth decline with aging, we investigated the role of OR2AT4 in the aging and senescence of human keratinocytes. OR2AT4 was functionally expressed in human keratinocytes (HaCaT) and exhibited co-expression with G-protein-coupled receptor signaling components, Golfα and adenylate cyclase 3. The OR2AT4 ligand sandalore modulates the intracellular calcium, inositol phosphate, and cyclic adenosine monophosphate (cAMP) levels. The increased calcium level induced by sandalore was attenuated in cells with OR2AT4 knockdown. OR2AT4 activation by sandalore inhibited the senescent cell phenotypes and restored cell proliferation and Ki-67 expression. Sandalore also inhibited the expression of senescence-associated β-galactosidase and increased p21 expression in senescent HaCaT cells in response to hydrogen peroxide. Additionally, sandalore activated the CaMKKβ/AMPK/mTORC1/autophagy signaling axis and promoted autophagy. OR2AT4 knockdown attenuated the increased in the intracellular calcium level, cell proliferation, and AMPK phosphorylation induced by sandalore. These findings demonstrate that the effects of sandalore are mediated by OR2AT4 activation. Our findings suggest that OR2AT4 may be a novel therapeutic target for anti-aging and anti-senescence in human keratinocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Science & Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Ticli G, Cazzalini O, Stivala LA, Prosperi E. Revisiting the Function of p21CDKN1A in DNA Repair: The Influence of Protein Interactions and Stability. Int J Mol Sci 2022; 23:ijms23137058. [PMID: 35806061 PMCID: PMC9267019 DOI: 10.3390/ijms23137058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
The p21CDKN1A protein is an important player in the maintenance of genome stability through its function as a cyclin-dependent kinase inhibitor, leading to cell-cycle arrest after genotoxic damage. In the DNA damage response, p21 interacts with specific proteins to integrate cell-cycle arrest with processes such as transcription, apoptosis, DNA repair, and cell motility. By associating with Proliferating Cell Nuclear Antigen (PCNA), the master of DNA replication, p21 is able to inhibit DNA synthesis. However, to avoid conflicts with this process, p21 protein levels are finely regulated by pathways of proteasomal degradation during the S phase, and in all the phases of the cell cycle, after DNA damage. Several lines of evidence have indicated that p21 is required for the efficient repair of different types of genotoxic lesions and, more recently, that p21 regulates DNA replication fork speed. Therefore, whether p21 is an inhibitor, or rather a regulator, of DNA replication and repair needs to be re-evaluated in light of these findings. In this review, we will discuss the lines of evidence describing how p21 is involved in DNA repair and will focus on the influence of protein interactions and p21 stability on the efficiency of DNA repair mechanisms.
Collapse
Affiliation(s)
- Giulio Ticli
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Lucia A. Stivala
- Dipartimento di Medicina Molecolare, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy; (O.C.); (L.A.S.)
| | - Ennio Prosperi
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-986267
| |
Collapse
|
8
|
Regulation of p27 and Cdk2 Expression in Different Adipose Tissue Depots in Aging and Obesity. Int J Mol Sci 2021; 22:ijms222111745. [PMID: 34769201 PMCID: PMC8584112 DOI: 10.3390/ijms222111745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Aging usually comes associated with increased visceral fat accumulation, reaching even an obesity state, and favoring its associated comorbidities. One of the processes involved in aging is cellular senescence, which is highly dependent on the activity of the regulators of the cell cycle. The aim of this study was to analyze the changes in the expression of p27 and cdk2 in different adipose tissue depots during aging, as well as their regulation by obesity in mice. Changes in the expression of p27 and CDK2 in visceral and subcutaneous white adipose tissue (WAT) biopsies were also analyzed in a human cohort of obesity and type 2 diabetes. p27, but not cdk2, exhibits a lower expression in subcutaneous than in visceral WAT in mice and humans. p27 is drastically downregulated by aging in subcutaneous WAT (scWAT), but not in gonadal WAT, of female mice. Obesity upregulates p27 and cdk2 expression in scWAT, but not in other fat depots of aged mice. In humans, a significant upregulation of p27 was observed in visceral WAT of subjects with obesity. Taken together, these results show a differential adipose depot-dependent regulation of p27 and cdk2 in aging and obesity, suggesting that p27 and cdk2 could contribute to the adipose-tissue depot’s metabolic differences. Further studies are necessary to fully corroborate this hypothesis.
Collapse
|
9
|
Virdis P, Marchesi I, Fiorentino FP, Migheli R, Sanna L, Bordoni V, Pintore G, Galleri G, Muroni MR, Bagella L, Fozza C, De Miglio MR, Podda L. Tomentosin a Sesquiterpene Lactone Induces Antiproliferative and Proapoptotic Effects in Human Burkitt Lymphoma by Deregulation of Anti- and Pro-Apoptotic Genes. Life (Basel) 2021; 11:life11111128. [PMID: 34833004 PMCID: PMC8623649 DOI: 10.3390/life11111128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Tomentosin is the most representative sesquiterpene lactone extracted by I. viscosa. Recently, it has gained particular attention in therapeutic oncologic fields due to its anti-tumor properties. (2) In this study, the potential anticancer features of tomentosin were evaluated on human Burkitt’s lymphoma (BL) cell line, treated with increasing tomentosin concentration for cytotoxicity screening. (3) Our data showed that both cell cycle arrest and cell apoptosis induction are responsible of the antiproliferative effects of tomentosin and may end in the inhibition of BL cell viability. Moreover, a microarray gene expression profile was performed to assess differentially expressed genes contributing to tomentosin activity. Seventy-five genes deregulated by tomentosin have been identified. Downregulated genes are enriched in immune-system pathways, and PI3K/AKT and JAK/STAT pathways which favor proliferation and growth processes. Importantly, different deregulated genes identified in tomentosin-treated BL cells are prevalent in molecular pathways known to lead to cellular death, specifically by apoptosis. Tomentosin-treatment in BL cells induces the downregulation of antiapoptotic genes such as BCL2A1 and CDKN1A and upregulation of the proapoptotic PMAIP1 gene. (4) Overall, our results suggest that tomentosin could be taken into consideration as a potential natural product with limited toxicity and relevant anti-tumoral activity in the therapeutic options available to BL patients.
Collapse
Affiliation(s)
- Patrizia Virdis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Irene Marchesi
- Kitos Biotech Srls, Porto Conte Ricerche, 07100 Sassari, Italy; (I.M.); (F.P.F.)
| | | | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Luca Sanna
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.B.); (L.B.)
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.B.); (L.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Claudio Fozza
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
- Correspondence: (C.F.); (M.R.D.M.)
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
- Correspondence: (C.F.); (M.R.D.M.)
| | - Luigi Podda
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (R.M.); (L.S.); (G.G.); (M.R.M.); (L.P.)
| |
Collapse
|
10
|
Baiula M, Cirillo M, Martelli G, Giraldi V, Gasparini E, Anelli AC, Spampinato SM, Giacomini D. Selective Integrin Ligands Promote Cell Internalization of the Antineoplastic Agent Fluorouracil. ACS Pharmacol Transl Sci 2021; 4:1528-1542. [PMID: 34661072 PMCID: PMC8506610 DOI: 10.1021/acsptsci.1c00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Drug conjugates consisting of an antineoplastic drug and a targeting receptor ligand could be effective to overcome the heavy side effects of unselective anticancer agents. To address this need, we report here the results of a project aimed to study agonist and antagonist integrin ligands as targeting head of molecular cargoes for the selective delivery of 5-fluorouracil (5-FU) to cancer or noncancer cells. Initially, two fluorescent β-lactam-based integrin ligands were synthesized and tested for an effective and selective internalization mediated by α4β1 or α5β1 integrins in Jurkat and K562 cells, respectively. No cellular uptake was observed for both fluorescent compounds in HEK293 noncancerous control cells. Afterward, three conjugates composed of the β-lactam-based integrin ligand, suitable linkers, and 5-FU were realized. The best compound E, acting as α5β1 integrin agonist, is able to selectively deliver 5-FU into tumor cells, successfully leading to cancer cell death.
Collapse
Affiliation(s)
- Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Martina Cirillo
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Martelli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Elisa Gasparini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Santi Mario Spampinato
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Daria Giacomini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
11
|
Chen J, Liu J, Wu S, Liu W, Xia Y, Zhao J, Yang Y, Wang Y, Peng Y, Zhao S. Atrazine Promoted Epithelial Ovarian Cancer Cells Proliferation and Metastasis by Inducing Low Dose Reactive Oxygen Species (ROS). IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2623. [PMID: 34435054 PMCID: PMC8358173 DOI: 10.30498/ijb.2021.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Atrazine (ATZ) is a triazine herbicide that is widely used in agriculture and has been detected in surface and underground water. Recently, laboratory and epidemiological research
have found that the bioaccumulation of ATZ in the environment leads to biotoxicity in the human immune and endocrine systems and results in tumor development. Objective: To investigate the effects of ATZ exposure on epithelial ovarian cancer (EOC) cells and elucidate the potential mechanisms governing these effects. Materials and Methods: The human EOC cell lines Skov3 and A2780 were used in this study to explore the effects and mechanisms of ATZ exposure on EOC. The mouse embryonic osteoblastic
precursor MC3T3-E1 cells served as the control cells to determine the effects of ATZ on cancer cell lines. After exposure to ATZ, the MTT assay, flow cytometry,
the colony formation assay, immunohistochemical staining, the cell scratch assay, and the Transwell assay were used to evaluate the proliferative activity, invasion,
and migration capabilities of EOC cell lines. Moreover, flow cytometry was also applied to detect the level of reactive oxygen species (ROS) in these two EOC cell lines,
as well as the MC3T3-E1 cells. To further illustrate the underlying mechanisms governing the effect of ATZ on EOC, real-time PCR and Western blotting were employed to assess
the transcription and the expression level of Stat3 signaling pathway-related genes in Skov3 and MC3T3-E1 cells. Results: The results showed that following ATZ treatment, the cell proliferation, migration, and invasion potencies of Skov3 and A2780 cells were increased compared to those of the
control group. Meanwhile, the ROS levels of EOC and MC3T3-E1 cells were notably elevated after ATZ treatment. In Skov3 cells, the expression levels of p53 and p21 were downregulated,
while those of Cyclin E, vascular endothelial growth factor (VEGF), matrix metallopeptidase 2 (MMP2), MMP9, signal transducers and activators of transcription 3 (Stat3),
and p-Stat3 were upregulated by ATZ treatment. In MC3T3-E1 cells, however, ATZ treatment did not affect the level of p53/p21 mRNA compared to the control groups.
Moreover, there was no significant change in the expression levels of Stat3 and p-Stat3 in MC3T3-E1 cells exposed to ATZ. This phenomenon was observed while the
proliferation rate was enhanced in MC3T3-E1 cells by ATZ. Conclusions: The results of this study suggest that ATZ effectively promotes the proliferation and metastasis of EOC cells through the Stat3 signaling pathway by inducing low levels of ROS.
Additionally, although ATZ might also induce proliferative potential in normal cells, the mechanisms governing its effects in these cells might be different from those in EOC cells.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shan Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei Liu
- Research Center of Circular Economy and Pollution Prevention and Control, Jilin Academy of Environmental Sciences, Changchun 130021, China
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanrong Yang
- Tongji University, School of Medicine, Shanghai 200092, China
| | - Yuan Wang
- School of nursing, Jilin University, Changchun 130021, China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
12
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
13
|
De Blasio C, Verma N, Moretti M, Cialfi S, Zonfrilli A, Franchitto M, Truglio F, De Smaele E, Ichijo H, Naguro I, Screpanti I, Talora C. Functional cooperation between ASK1 and p21 Waf1/Cip1 in the balance of cell-cycle arrest, cell death and tumorigenesis of stressed keratinocytes. Cell Death Discov 2021; 7:75. [PMID: 33846306 PMCID: PMC8042117 DOI: 10.1038/s41420-021-00459-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Both CDKN1A (p21 Waf1/Cip1) and Apoptosis signal-regulating kinase 1 (ASK1) play important roles in tumorigenesis. The role of p21 Waf1/Cip1 in attenuating ASK1-induced apoptosis by various stress conditions is well established. However, how ASK1 and p21 Waf1/Cip1 functionally interact during tumorigenesis is still unclear. To address this aspect, we crossed ASK1 knockout (ASK1KO) mice with p21 Waf1/Cip1 knockout (p21KO) mice to compare single and double-mutant mice. We observed that deletion of p21 Waf1/Cip1 leads to increased keratinocyte proliferation but also increased cell death. This is mechanistically linked to the ASK1 axis-induced apoptosis, including p38 and PARP. Indeed, deletion of ASK1 does not alter the proliferation but decreases the apoptosis of p21KO keratinocytes. To analyze as this interaction might affect skin carcinogenesis, we investigated the response of ASK1KO and p21KO mice to DMBA/TPA-induced tumorigenesis. Here we show that while endogenous ASK1 is dispensable for skin homeostasis, ASK1KO mice are resistant to DMBA/TPA-induced tumorigenesis. However, we found that epidermis lacking both p21 and ASK1 reacquires increased sensitivity to DMBA/TPA-induced tumorigenesis. We demonstrate that apoptosis and cell-cycle progression in p21KO keratinocytes are uncoupled in the absence of ASK1. These data support the model that a critical event ensuring the balance between cell death, cell-cycle arrest, and successful divisions in keratinocytes during stress conditions is the p21-dependent ASK1 inactivation.
Collapse
Affiliation(s)
- Carlo De Blasio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy.,IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nagendra Verma
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Matteo Franchitto
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Federica Truglio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy.
| |
Collapse
|
14
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
15
|
Oxidatively Modified LDL Suppresses Lymphangiogenesis via CD36 Signaling. Antioxidants (Basel) 2021; 10:antiox10020331. [PMID: 33672291 PMCID: PMC7926875 DOI: 10.3390/antiox10020331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Arterial accumulation of plasma-derived LDL and its subsequent oxidation contributes to atherosclerosis. Lymphatic vessel (LV)-mediated removal of arterial cholesterol has been shown to reduce atherosclerotic lesion formation. However, the precise mechanisms that regulate LV density and function in atherosclerotic vessels remain to be identified. The aim of this study was to investigate the role of native LDL (nLDL) and oxidized LDL (oxLDL) in modulating lymphangiogenesis and underlying molecular mechanisms. Western blotting and immunostaining experiments demonstrated increased oxLDL expression in human atherosclerotic arteries. Furthermore, elevated oxLDL levels were detected in the adventitial layer, where LV are primarily present. Treatment of human lymphatic endothelial cells (LEC) with oxLDL inhibited in vitro tube formation, while nLDL stimulated it. Similar results were observed with Matrigel plug assay in vivo. CD36 deletion in mice and its siRNA-mediated knockdown in LEC prevented oxLDL-induced inhibition of lymphangiogenesis. In addition, oxLDL via CD36 receptor suppressed cell cycle, downregulated AKT and eNOS expression, and increased levels of p27 in LEC. Collectively, these results indicate that oxLDL inhibits lymphangiogenesis via CD36-mediated regulation of AKT/eNOS pathway and cell cycle. These findings suggest that therapeutic blockade of LEC CD36 may promote arterial lymphangiogenesis, leading to increased cholesterol removal from the arterial wall and reduced atherosclerosis.
Collapse
|
16
|
P21 is not a prognostic marker for rectal cancer - five-year follow up study of rectal cancer in stages I-IV. Contemp Oncol (Pozn) 2021; 24:247-251. [PMID: 33531872 PMCID: PMC7836274 DOI: 10.5114/wo.2020.102632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
The p21 participates in the regulation of DNA repair and replication, and modulation of apoptosis as well. After DNA damage, the p53-dependent induction of p21 results in cell cycle arrest or could trigger cell apoptosis. The objective of the study was the assessment of p21 immunoreactivity in rectal cancer and the estimation of relationships with clinical outcome especially as predictor of poor outcome. While applying the ruling in and out criteria, 102 patients were incorporated to the study, with stage I–IV rectal cancer who had undergone surgery in a planned mode during 2005–2011. The follow-up covered 5 years period from surgery date. Conventional immunohistochemistry were performed using antibody against p21 (p21WAF1 (Clone H252) to detect overexpression targeted receptor. The analysis showed no statistically significant differences in the survival curves of patients in groups with immunoreactivity of p21 protein at 0; 1; 2; 3 (p = 0.6453 in the log-rank test), also is not a significant risk factor for death (HR = 0.915, p = 0.7842) and for tumor dissemination (HR = 0.94, p = 0.9426). Our study leads to the conclusion that the probability of survival does not depend on p21 expression and do not authorize the importance of p21 immunoreactivity in the detection and monitoring of rectal cancer treatment.
Collapse
|
17
|
miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia 2021; 35:1933-1948. [PMID: 33262524 PMCID: PMC8257503 DOI: 10.1038/s41375-020-01095-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
Pharmacological inhibition of MDM2/4, which activates the critical tumor suppressor p53, has been gaining increasing interest as a strategy for the treatment of acute myeloid leukemia (AML). While clinical trials of MDM2 inhibitors have shown promise, responses have been confined to largely molecularly undefined patients, indicating that new biomarkers and optimized treatment strategies are needed. We previously reported that the microRNA miR-10a is strongly overexpressed in some AML, and demonstrate here that it modulates several key members of the p53/Rb network, including p53 regulator MDM4, Rb regulator RB1CC1, p21 regulator TFAP2C, and p53 itself. The expression of both miR-10a and its downstream targets were strongly predictive of MDM2 inhibitor sensitivity in cell lines, primary AML specimens, and correlated to response in patients treated with both MDM2 inhibitors and cytarabine. Furthermore, miR-10a inhibition induced synergy between MDM2 inhibitor Nutlin-3a and cytarabine in both in vitro and in vivo AML models. Mechanistically this synergism primarily occurs via the p53-mediated activation of cytotoxic apoptosis at the expense of cytoprotective autophagy. Together these findings demonstrate that miR-10a may be useful as both a biomarker to identify patients most likely to respond to cytarabine+MDM2 inhibition and also a druggable target to increase their efficacy.
Collapse
|
18
|
Reedich EJ, Kalski M, Armijo N, Cox GA, DiDonato CJ. Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn 2B/- mouse model of spinal muscular atrophy. Exp Neurol 2020; 337:113587. [PMID: 33382987 DOI: 10.1016/j.expneurol.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear. Transcriptomic studies consistently report p53 pathway activation in motor neurons and spinal cord tissue of SMA mice. Recent work has identified p53 as an inducer of spinal motor neuron loss in severe Δ7 SMA mice. Additionally, the cyclin-dependent kinase inhibitor P21 (Cdkn1a), an inducer of cell cycle arrest and mediator of skeletal muscle atrophy, is consistently increased in motor neurons, spinal cords, and other tissues of various SMA models. p21 is a p53 transcriptional target but can be independently induced by cellular stressors. To ascertain whether p53 and p21 signaling pathways mediate spinal motor neuron death in milder SMA mice, and how they affect the overall SMA phenotype, we introduced Trp53 and P21 null alleles onto the Smn2B/- background. We found that p53 and p21 depletion did not modulate the timing or degree of Smn2B/- motor neuron loss as evaluated using electrophysiological and immunohistochemical methods. Moreover, we determined that Trp53 and P21 knockout differentially affected Smn2B/- mouse lifespan: p53 ablation impaired survival while p21 ablation extended survival through Smn-independent mechanisms. These results demonstrate that p53 and p21 are not primary drivers of spinal motor neuron death in Smn2B/- mice, a milder SMA mouse model, as motor neuron loss is not alleviated by their ablation.
Collapse
Affiliation(s)
- Emily J Reedich
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Kalski
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Nicholas Armijo
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Christine J DiDonato
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
20
|
de Pedro I, Galán-Vidal J, Freije A, de Diego E, Gandarillas A. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene 2020; 40:152-162. [PMID: 33097856 DOI: 10.1038/s41388-020-01520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The control of cell fate is critical to homeostasis and cancer. Cell cycle cdk inhibitor p21CIP1 has a central and paradoxical role in the regulatory crossroads leading to senescence, apoptosis, or differentiation. p21 is an essential target of tumor suppressor p53, but it also is regulated independently. In squamous self-renewal epithelia continuously exposed to mutagenesis, p21 controls cell fate by mechanisms still intriguing. We previously identified a novel epidermoid DNA damage-differentiation response. We here show that p21 intervenes in the mitosis block that is required for the squamous differentiation response to cell cycle deregulation and replication stress. The inactivation of endogenous p21 in human primary keratinocytes alleviated the differentiation response to oncogenic loss of p53 or overexpression of the DNA replication major regulator Cyclin E. The bypass of p21-induced mitotic block involving upregulation of Cyclin B allowed DNA damaged cells to escape differentiation and continue to proliferate. In addition, loss of p21 drove keratinocytes from differentiation to apoptosis upon moderate UV irradiation. The results show that p21 is required to drive keratinocytes towards differentiation in response to genomic stress and shed light into its dual and paradoxical role in carcinogenesis.
Collapse
Affiliation(s)
- Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ernesto de Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Paediatric Surgery, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
21
|
Chen Q, Sun X, Luo X, Wang J, Hu J, Feng Y. PIK3R3 inhibits cell senescence through p53/p21 signaling. Cell Death Dis 2020; 11:798. [PMID: 32973127 PMCID: PMC7519147 DOI: 10.1038/s41419-020-02921-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Cellular senescence is a stress response of human cells that removes potentially harmful cells by initiating cell cycle arrest. Inducing senescence of tumor cells may be an effective tumor-inhibiting strategy. In this study we found that PIK3R3 could inhibit the cell senescence of colorectal cancer cells and promote cell proliferation through the p53/p21 signal pathway. PIK3R3 could bind to p53 and inhibit the binding of p53 to the p21 gene promoter region, and thus affecting the transcriptional activity of p21 gene. Our study has provided new evidence of the role of PIK3R3 in p53 regulation and inhibition of PIK3R3 may be one of the potential targets of tumor therapy.
Collapse
Affiliation(s)
- Qianzhi Chen
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuling Sun
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuelai Luo
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Wang
- Department of Immunology, Basic of Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbo Hu
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yongdong Feng
- Department of GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Guo Y, Fan W, Xie Y, Cao S, Wan H, Jin B. SIRT1 Is the Target Gene for 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside Alleviating the HUVEC Senescence. Front Pharmacol 2020; 11:542902. [PMID: 33013385 PMCID: PMC7508177 DOI: 10.3389/fphar.2020.542902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore the effects of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-d-glucoside (TSG) on the senescence of human umbilical vein cells (HUVEC) induced by hydrogen peroxide (H2O2) and to identify the potential targets mediating its protective action. HUVEC cells pre-treated with TSG for 24 h were exposed to H2O2 treatment. TSG significantly decreased H2O2-induced cellular senescence, as indicated by reduced senescence-associated β-galactosidase (SA-β-gal) positive staining, the proportion of cells in the G1 phase, cell apoptosis, p21, and plasminogen activator inhibitor-1 (PAI-1) expression. Moreover, TSG promoted Sirtuin 1 (SIRT1) expression. When SIRT1 was inhibited by EX527 or SIRT1 siRNA, the effect of TSG is diminished according to the increased proportion of cells in the G1 phase, cell apoptosis, p21, and PAI-1 expression. Overall, our study established TSG as an anti-senescence compound that exerts its protective action by regulating SIRT1 expression.
Collapse
Affiliation(s)
- Yan Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxue Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuefeng Xie
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyu Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, Gandarillas A. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ 2020; 27:2451-2467. [PMID: 32080348 PMCID: PMC7370216 DOI: 10.1038/s41418-020-0515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
| | - David Santamaría
- CNIO, Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- INSERM U1218, ACTION Laboratory, IECB, University of Bordeaux, Pessac, France
| | - Marcos Malumbres
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
24
|
Russo LC, Farias JO, Forti FL. DUSP3 maintains genomic stability and cell proliferation by modulating NER pathway and cell cycle regulatory proteins. Cell Cycle 2020; 19:1545-1561. [PMID: 32380926 DOI: 10.1080/15384101.2020.1762043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The DUSP3 phosphatase regulates cell cycle, proliferation, apoptosis and senescence of different cell types, lately shown as a mediator of DNA repair processes. This work evaluated the impact of DUSP3 loss of function (lof) on DNA repair-proficient fibroblasts (MRC-5), NER-deficient cell lines (XPA and XPC) and translesion DNA synthesis (TLS)-deficient cells (XPV), after UV-radiation stress. The levels of DNA strand breaks, CPDs and 6-4-PPs have accumulated over time in all cells under DUSP3 lof, with a significant increase in NER-deficient lines. The inefficient repair of these lesions increased sub-G1 population of XPA and XPC cells 24 hours after UV treatment, notably marked by DUSP3 lof, which is associated with a reduced cell population in G1, S and G2/M phases. It was also detected an increase in S and G2/M populations of XPV and MRC-5 cells after UV-radiation exposure, which was slightly attenuated by DUSP3 lof due to a discrete increase in sub-G1 cells. The cell cycle progression was accompanied by changes in the levels of the main Cyclins (A1, B1, D1 or E1), CDKs (1, 2, 4 or 6), and the p21 Cip1 inhibitor, in a DUSP3-dependent manner. DUSP3 lof affected the proliferation of MRC-5 and XPA cells, with marked worsening of the XP phenotype after UV radiation. This work highlights the roles of DUSP3 in DNA repair fitness and in the fine control of regulatory proteins of cell cycle, essential mechanisms to maintenance of genomic stability.
Collapse
Affiliation(s)
- Lilian Cristina Russo
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| | - Jessica Oliveira Farias
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo , São Paulo-SP, Brazil
| |
Collapse
|
25
|
Hu Z, Long T, Ma Y, Zhu J, Gao L, Zhong Y, Wang X, Wang X, Li Z. Downregulation of GLYR1 contributes to microsatellite instability colorectal cancer by targeting p21 via the p38MAPK and PI3K/AKT pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:76. [PMID: 32370786 PMCID: PMC7201645 DOI: 10.1186/s13046-020-01578-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND GLYR1 has a high mutation frequency in microsatellite instability colorectal cancer (MSI CRC) and is presumed to be a novel tumor suppressor. However, the role of GLYR1 in tumors has never been studied. In particular, the downregulation of GLYR1 in MSI CRC is worthy of further investigation. METHODS Western blot and immunohistochemistry analyses were used to detect GLYR1 protein expression in CRC tissues and cell lines, and the clinical significance of GLYR1 was also analyzed. The relationship between GLYR1 and MLH1 was validated by immunofluorescence, immunoprecipitation and bioinformatics analyses. Western blotting, qRT-PCR, CCK-8 assays, colony formation assays, flow cytometry and Hoechst 33258 staining assays were used to assess the effect of GLYR1 on the cell cycle progression, proliferation, differentiation and apoptosis of CRC cells in vitro. The related mechanisms were initially investigated by Western blotting. RESULTS GLYR1 was significantly downregulated in MSI CRC and its expression was negatively correlated with tumor size and positively correlated with tumor differentiation in CRC patients. In addition, GLYR1 interacted with MLH1 to regulate its nuclear import and expression. Moreover, downregulation of GLYR1 accelerated G1/S phase transition, promoted proliferation and inhibited differentiation of SW480 and SW620 cells in vitro. Furthermore, downregulation of GLYR1 decreased the sensitivity to 5-fluorouracil (5-FU) by inhibiting the mitochondrial apoptosis pathway in CRC cells. Inhibition of the p38 mitogen-activated protein kinase (p38MAPK) and activation of the phosphatidyl 3-kinase/protein kinase B (PI3K/Akt) signaling pathways were involved in the mechanism by which GLYR1 downregulated p21. CONCLUSIONS Ours is the first study to elucidate the role of GLYR1 in tumors and provide evidence for GLYR1 as a biological marker that reflects the degree of malignancy and sensitivity to 5-FU in MSI CRC.
Collapse
Affiliation(s)
- Zhiyan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Ting Long
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Yidan Ma
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Jiaxian Zhu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Lingfang Gao
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Yan Zhong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Xia Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China
| | - Zuguo Li
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Molecular tumor Pathology, Guangzhou, China.
| |
Collapse
|
26
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
27
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
28
|
Martino E, Vuoso DC, D'Angelo S, Mele L, D'Onofrio N, Porcelli M, Cacciapuoti G. Annurca apple polyphenol extract selectively kills MDA-MB-231 cells through ROS generation, sustained JNK activation and cell growth and survival inhibition. Sci Rep 2019; 9:13045. [PMID: 31506575 PMCID: PMC6736874 DOI: 10.1038/s41598-019-49631-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023] Open
Abstract
Polyphenols represent the most studied class of nutraceuticals that can be therapeutics for a large spectrum of diseases, including cancer. In this study, we investigated for the first time the antitumor activities of polyphenol extract from Annurca apple (APE) in MDA-MB-231 triple negative breast cancer cells, and we explored the underlying mechanisms. APE selectively inhibited MDA-MB-231 cell viability and caused G2/M phase arrest associated with p27 and phospho-cdc25C upregulation and with p21 downregulation. APE promoted reactive oxygen species (ROS) generation in MDA-MB-231 cells while it acted as antioxidant in non-tumorigenic MCF10A cells. We demonstrated that ROS generation represented the primary step of APE antitumor activity as pretreatment with antioxidant N-acetylcysteine (NAC) prevented APE-induced G2/M phase arrest, apoptosis, and autophagy. APE downregulated Dusp-1 and induced a significant increase in JNK/c-Jun phosphorylation that were both prevented by NAC. Moreover, downregulation of JNK by its specific inhibitor SP600125 significantly diminished the anticancer activity of APE indicating that ROS generation and sustained JNK activation represented the main underlying mechanism of APE-induced cell death. APE also inhibited AKT activation and downregulated several oncoproteins, such as NF-kB, c-myc, and β-catenin. In light of these results, APE may be an attractive candidate for drug development against triple negative breast cancer.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Daniela Cristina Vuoso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Stefania D'Angelo
- Department of Motor Sciences and Wellness, "Parthenope" University, via Medina 40, 80133, Naples, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Luciano Armanni 5, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
29
|
Thr55 phosphorylation of p21 by MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in diet-induced obese mice. Cell Death Dis 2019; 10:380. [PMID: 31097688 PMCID: PMC6522503 DOI: 10.1038/s41419-019-1616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK), an AMP-activated protein kinase (AMPK)-related kinase, has previously been shown to interact with p53 and to stimulate downstream signaling. p21, a downstream target of p53, is also known to be involved in adipocyte and obesity metabolism. However, little is known about the mechanism by which p21 mediates obesity-associated metabolic adaptation. Here, we identify MPK38 as an interacting partner of p21. p21 and MPK38 interacted through the cyclin-dependent kinase (CDK) binding region of p21 and the C-terminal domain of MPK38. MPK38 potentiated p21-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by inhibiting assembly of CDK2-cyclin E and CDK4-cyclin D complexes via induction of CDK2-p21 and CDK4-p21 complex formation and reductions in complex formation between p21 and its negative regulator mouse double minute 2 (MDM2), leading to p21 stabilization. MPK38 phosphorylated p21 at Thr55, stimulating its nuclear translocation, which resulted in greater association of p21 with peroxisome proliferator-activated receptor γ (PPARγ), preventing the PPARγ transactivation required for adipogenesis. Furthermore, restoration of p21 expression by adenoviral delivery in diet-induced obese mice ameliorated obesity-induced metabolic abnormalities in a MPK38 phosphorylation-dependent manner. These results suggest that MPK38 functions as a positive regulator of p21, regulating apoptosis, cell cycle arrest, and metabolism during obesity.
Collapse
|
30
|
Flexicaulin A, An ent-Kaurane Diterpenoid, Activates p21 and Inhibits the Proliferation of Colorectal Carcinoma Cells through a Non-Apoptotic Mechanism. Int J Mol Sci 2019; 20:ijms20081917. [PMID: 31003485 PMCID: PMC6514797 DOI: 10.3390/ijms20081917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Natural products, explicitly medicinal plants, are an important source of inspiration of antitumor drugs, because they contain astounding amounts of small molecules that possess diversifying chemical entities. For instance, Isodon (formerly Rabdosia), a genus of the Lamiaceae (formerly Labiatae) family, has been reported as a rich source of natural diterpenes. In the current study, we evaluated the in vitro anti-proliferative property of flexicaulin A (FA), an Isodon diterpenoid with an ent-kaurane structure, in human carcinoma cells, by means of cell viability assay, flow cytometric assessment, quantitative polymerase chain reaction array, Western blotting analysis, and staining experiments. Subsequently, we validated the in vivo antitumor efficacy of FA in a xenograft mouse model of colorectal carcinoma. From our experimental results, FA appears to be a potent antitumor molecule, since it significantly attenuated the proliferation of human colorectal carcinoma cells in vitro and restricted the growth of corresponsive xenograft tumors in vivo without causing any adverse effects. Regarding its molecular mechanism, FA considerably elevated the expression level of p21 and induced cell cycle arrest in the human colorectal carcinoma cells. While executing a non-apoptotic mechanism, we believe the antitumor potential of FA opens up new horizons for the therapy of colorectal malignancy.
Collapse
|
31
|
Han Y, Wu P, Wang Z, Zhang Z, Sun S, Liu J, Gong S, Gao P, Iwakuma T, Molina-Vila MA, Chen BPC, Zhang Y, Ji T, Mo Q, Chen P, Hu J, Wang S, Zhou J, Lu H, Gao Q. Ubiquinol-cytochrome C reductase core protein II promotes tumorigenesis by facilitating p53 degradation. EBioMedicine 2019; 40:92-105. [PMID: 30674441 PMCID: PMC6412871 DOI: 10.1016/j.ebiom.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/03/2023] Open
Abstract
Background Ubiquinol-cytochrome C reductase core protein II (QCR2) is essential for mitochondrial functions, yet, its role in cancer development has remained elusive. Methods The expression of QCR2 in cancer patients was assessed by immunohistochemistry. The proliferation of cancer cells was assessed by CCK-8 assay, EdU staining and Flow cytometry analysis. The biological function of QCR2 and PHB were determined using western blotting, RT-qPCR, microarray analysis and xenografts. The interactions between proteins and the ubiquitination of p53 were assessed by immunoprecipitation, mass spectrometry analysis and GST pull down. The subcellular location of PHB and QCR2 was assessed by immunoblotting and immunofluorescence. Finding The expression of QCR2 is upregulated in multiple human tumors. Suppression of QCR2 inhibits cancer cell growth by activating p53 signaling and inducing p21-dependent cell cycle arrest and senescence. QCR2 directly interacts with PHB in the mitochondria. Overexpression of QCR2 inhibits PHB binding to p53 in the nucleus, and facilitates p53 ubiquitination and degradation, consequently leading to tumorigenesis. Also, increased QCR2 and decreased PHB protein levels are well correlated with decreased expression of p21 in cervical cancer tissues. Interpretation These results identify a novel role for QCR2, together with PHB, in negative regulation of p53 stability and activity, thus promote cervical carcinogenesis. Fund “973” Program of China, the National Science-technology Supporting Plan Projects, the National Natural Science Foundation of China, National Science and Technology Major Sub-Project and Technical Innovation Special Project of Hubei Province.
Collapse
Affiliation(s)
- Yingyan Han
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujuan Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology(,) Quirón-Dexeus University Hospital, Barcelona, Spain
| | - Benjamin Ping-Chi Chen
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX75390, USA
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan 410008, China
| | - Teng Ji
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Mo
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingbo Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shixuan Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Kilbas PO, Akcay IM, Doganay GD, Arisan ED. Bag-1 silencing enhanced chemotherapeutic drug-induced apoptosis in MCF-7 breast cancer cells affecting PI3K/Akt/mTOR and MAPK signaling pathways. Mol Biol Rep 2019; 46:847-860. [PMID: 30661182 DOI: 10.1007/s11033-018-4540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
The multifunctional anti-apoptotic Bag-1 protein has important roles in apoptosis, proteasome-mediated degradation, transcriptional regulation, and intracellular signaling. Bag-1 promotes cell survival and proliferation, and is overexpressed in breast cancer. Therefore, Bag-1-targeted therapy might be a promising strategy to treat breast cancer. However, the effects of Bag-1 silencing in combination with conventional chemotherapeutic drugs on cell viability and major signaling pathways have not yet been fully investigated in breast cancer cells. In this study, we investigated the cytotoxic effects of Bag-1 silencing, alone and in combination with cisplatin or paclitaxel treatment, in MCF-7 breast cancer cells. Bag-1 knockdown by shRNA or siRNA transfection sensitized MCF-7 cells to apoptosis induced by cisplatin or paclitaxel. Combination of Bag-1 silencing and drug treatment more potently downregulated the pro-survival PI3K/Akt/mTOR and p44/42 mitogen activated protein kinase (MAPK) pathways, and more potently upregulated the stress-activated p38 and SAPK/JNK MAPK pathways. Bag-1-silenced drug-treated cells had also highly reduced proliferative capacity, downregulated cyclin-cyclin dependent kinase complexes and upregulated tumor suppressors p21 and Rb. These results overall indicated that Bag-1 silencing enhanced cisplatin- or paclitaxel-induced cytotoxicity through multiple pathways. In conclusion, Bag-1 targeted therapy might enhance the therapeutic potential of conventional anti-cancer drugs in the treatment of breast cancer.
Collapse
Affiliation(s)
- Pelin Ozfiliz Kilbas
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Izzet Mehmet Akcay
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey.
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey.
| |
Collapse
|
33
|
Jiang D, Song Y, Cao W, Wang X, Jiang D, Lv Z, Yang Z, Li F. p53-independent role of MYC mutant T58A in the proliferation and apoptosis of breast cancer cells. Oncol Lett 2019; 17:1071-1079. [PMID: 30655867 PMCID: PMC6312996 DOI: 10.3892/ol.2018.9688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
Myc proto-oncogene (MYC) is an oncoprotein that promotes proliferation and apoptosis. MYC mutations frequently disrupt the apoptotic processes during tumorigenesis. In the present study, the effects of the MYC point mutation T58A on the progression of a cellular tumor antigen p53 (p53)-/- human breast cancer cell line was analyzed, and the mechanism of p53-independent MYC-induced apoptosis was investigated. HCC1937 cells were transfected with mutant (T58A) or wild-type (WT) MYC using lentiviral vectors. The proliferation of transfected cells was evaluated by colony formation and MTT assays, and apoptosis was analyzed by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays. WT MYC was transfected into HCC1937 cells exhibiting p14/p21 silencing through lentivirus-mediated RNA interference. The expression levels of Bim were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Mutant MYC proteins retained the ability to stimulate the proliferation of HCC1937 cells, although they were defective at promoting apoptosis due to a failure to induce the Bcl-2 homology 3 domain-only protein Bim. When p14 was silenced, the effects of mutant MYC on proliferation and apoptosis were weakened. When p21 was silenced, the effects of mutant MYC were strengthened. Breast cancer-derived T58A MYC mutations are unable to activate Bim due to their failure to regulate p14/p21. It was concluded that mutant MYC was more effective compared with WT MYC at promoting the progression of breast cancer.
Collapse
Affiliation(s)
- Dandan Jiang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuhua Song
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihong Cao
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xingang Wang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Danni Jiang
- Imaging Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhaochuan Yang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Funian Li
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
34
|
Lu Y, Qu H, Qi D, Xu W, Liu S, Jin X, Song P, Guo Y, Jia Y, Wang X, Li H, Li Y, Quan C. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Res Ther 2019; 10:28. [PMID: 30646941 PMCID: PMC6334457 DOI: 10.1186/s13287-018-1120-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Self-renewal is dependent on an intrinsic gene regulatory network centered on OCT4 and on an atypical cell cycle G1/S transition, which is also regulated by OCT4. p21, a gene negatively associated with self-renewal and a senescence marker, is a member of the universal cyclin-dependent kinase inhibitors (CDKIs) and plays critical roles in the regulation of the G1/S transition. The expression of p21 can be regulated by OCT4-targeted DNA methyltransferases (DNMTs), which play distinct roles in gene regulation and maintaining pluripotency properties. The aim of this study was to determine the role of OCT4 in the regulation of self-renewal and senescence in human hair follicle mesenchymal stem cells (hHFMSCs) and to characterize the molecular mechanisms involved. METHODS A lentiviral vector was used to ectopically express OCT4. The influences of OCT4 on the self-renewal and senescence of hHFMSCs were investigated. Next-generation sequencing (NGS) was performed to identify the downstream genes of OCT4 in this process. Methylation-specific PCR (MSP) analysis was performed to measure the methylation level of the p21 promoter region. p21 was overexpressed in hHFMSCsOCT4 to test its downstream effect on OCT4. The regulatory effect of OCT4 on DNMTs was examined by ChIP assay. 5-aza-dC/zebularine was used to inhibit the expression of DNMTs, and then self-renewal properties and senescence in hHFMSCs were detected. RESULTS The overexpression of OCT4 promoted proliferation, cell cycle progression, and osteogenic differentiation capacity of hHFMSCs. The cell senescence of hHFMSCs was markedly suppressed due to the ectopic expression of OCT4. Through NGS, we identified 2466 differentially expressed genes (DEGs) between hHFMSCsOCT4 and hHFMSCsEGFP, including p21, which was downregulated. The overexpression of p21 abrogated the proliferation and osteogenic differentiation capacity of hHFMSCsOCT4 and promoted cell senescence. OCT4 enhanced the transcription of DNMT genes, leading to an elevation in the methylation of the p21 promoter. The inhibition of DNMTs reversed the OCT4-induced p21 reduction, depleted the self-renewal of hHFMSCsOCT4, and triggered cell senescence. CONCLUSIONS OCT4 maintains the self-renewal ability of hHFMSCs and reverses senescence by suppressing the expression of p21 through the upregulation of DNMTs.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Shutong Liu
- Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiangshu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yiyang Jia
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093-0651, USA
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China.
| |
Collapse
|
35
|
Disproportionate feedback interactions govern cell‐type specific proliferation in mammalian cells. FEBS Lett 2018; 592:3248-3263. [DOI: 10.1002/1873-3468.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 11/07/2022]
|
36
|
Garavello W, Viganò P, Romagnoli M, Sordo L, Berti E, Tredici G, Gaini RM. Expression of Cell Cycle Regulatory Proteins and Analysis of Apoptosis in Normal Nasal Mucosa and in Nasal Polyps. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The etiopathogenesis of nasal polyps still is to be clarified. Although hyperplasia is a typical feature of these pathological processes, little attention has been paid to specific aspects of cellular growth in polyps. We have evaluated the expression and localization of some of the regulatory proteins that direct the cell through the specific sequence of events culminating in mitosis or apoptosis in nasal polyps. Methods Twenty samples of nasal polyps and 20 samples of normal nasal mucosa have been analyzed for apoptotic index by detecting the DNA 3’ OH ends deriving from DNA fragmentation. Moreover, they have been evaluated by immunohistochemical staining for expression of Ki-67, cyclins A and B1, p53, p21, p27, murine double minute clone 2, and Bcl-2. Results We have identified a greater proportion of proliferating cells in the lining epithelial cells of the polyps when compared with the normal mucosa as stained with anti–Ki-67 antibodies. An overexpression of p53, MDM2, and Bcl-2 and an increased apoptosis were observed in nasal polyps compared with the normal mucosa, whereas no variation of p27 expression was observed. The p21 and cyclins A and B1 were rarely expressed in both pathological and normal tissue. Conclusion The p53-based control system of cell cycle progression appears to be altered in nasal polyps, potentially leading to an abrogation of the DNA damage checkpoint. Evaluation of the expression of the regulatory proteins that direct the cells throughout their cycle in nasal polyps may allow a better understanding of the biological behavior and clinical outcome of these benign pathological entities.
Collapse
Affiliation(s)
- Werner Garavello
- Department of Otorhinolaryngology, University of Milano-Bicocca, Dipartimento di neuroscience e technologie biomediche, Monza, Italy
| | - Paola Viganò
- Istituto Auxologico Italiano, Cusano Milanino, Milano, Italy
| | - Marco Romagnoli
- Department of Otorhinolaryngology, University of Milano-Bicocca, Dipartimento di neuroscience e technologie biomediche, Monza, Italy
| | - Lorenza Sordo
- Department of Otorhinolaryngology, University of Milano-Bicocca, Dipartimento di neuroscience e technologie biomediche, Monza, Italy
| | - Emilio Berti
- Ospedale Maggiore, Istituto di ricerca e cura a carattere scientifico, University of Milan, Milano, Italy
| | - Giovanni Tredici
- Department of Neuroscience and Biomedical Technologies, University of Milano-Bicocca, Monza, Italy
| | - Renato Maria Gaini
- Department of Otorhinolaryngology, University of Milano-Bicocca, Dipartimento di neuroscience e technologie biomediche, Monza, Italy
| |
Collapse
|
37
|
Axitinib induces senescence-associated cell death and necrosis in glioma cell lines: The proteasome inhibitor, bortezomib, potentiates axitinib-induced cytotoxicity in a p21(Waf/Cip1) dependent manner. Oncotarget 2018; 8:3380-3395. [PMID: 27926485 PMCID: PMC5356889 DOI: 10.18632/oncotarget.13769] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is associated with a poor overall survival despite new treatment advances. Antiangiogenic strategies targeting VEGF based on tyrosine kinase inhibitors (TKIs) are currently undergoing extensive research for the treatment of glioma. Herein we demonstrated that the TKI axitinib induces DNA damage response (DDR) characterized by γ-H2AX phosphorylation and Chk1 kinase activation leading to G2/M cell cycle arrest and mitotic catastrophe in U87, T98 and U251 glioma cell lines. Moreover, we found that p21(Waf1/Cip1) increased levels correlates with induction of ROS and senescence-associated cell death in U87 and T98 cell lines, which are reverted by N-acetyl cysteine pretreatment. Conversely, U251 cell line showed a resistant phenotype in response to axitinib treatment, as evidenced by cell cycle arrest but no sign of cell death. The combinatorial use of axitinib with other therapies, with the aim of inhibiting multiple signaling pathways involved in tumor growth, can increase the efficiency of this TKI. Thus, we addressed the combined effects of axitinib with no toxic doses of the proteasome inhibitor bortezomib on the growth of U87 and T98 axitinib-sensitive and axitinib-resistant U251 cell lines. Compared to single treatments, combined exposure was more effective in inhibiting cell viability of all glioma cell lines, although with different cell death modalities. The regulation of key DDR and cell cycle proteins, including Chk1, γ-H2AX and p21(Waf1/Cip1) was also studied in glioma cell lines. Collectively, these findings provide new perspectives for the use of axitinib in combination with Bortezomib to overcome the therapy resistance in gliomas.
Collapse
|
38
|
Xie W, Zhang Z, Song L, Huang C, Guo Z, Hu X, Bi S, Yu R. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells. Pharmacogn Mag 2018; 14:116-123. [PMID: 29576711 PMCID: PMC5858231 DOI: 10.4103/pm.pm_63_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. Materials and Methods: The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4′,6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. Objective: The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. Results: CMF suppressed KB cells’ proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. Conclusions: CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. SUMMARY CMF exhibited strong anticancer activity against oral squamous carcinoma KB cells CMF inhibited KB cells’ proliferation via induction of apoptosis and G2/M cell cycle arrest CMF activated JNK signaling pathway and promoted the nuclear localization of c-Jun CMF regulated the apoptosis- and cell cycle-related proteins in a manner dependent on JNK/c-Jun pathway.
Abbreviations used: CMF: Cordyceps militaris fraction; OSCC: Oral squamous cell carcinoma; JNK: c-Jun N-terminal kinase.
Collapse
Affiliation(s)
- Wangshi Xie
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Zhang Zhang
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Chunhua Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Xianjing Hu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Rongmin Yu
- Department of Pharmacology, College of Pharmacy, Jinan University, China.,Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Tian Y, He J, Liu N, Huang D, Liu Z, Yang Y, Chen J, Zhao B, Zhao S, Liang B. Atrazine exposure improves the proliferation of H22 cellsin vitroandin vivo. RSC Adv 2018; 8:21759-21767. [PMID: 35541706 PMCID: PMC9080988 DOI: 10.1039/c8ra02671h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Atrazine (ATZ), a widely used triazine herbicide, has been detected in the surface and ground water even far from where it is applied. Recently, the biotoxicity of atrazine to the immune, reproductive and endocrine systems has been preliminarily observed in laboratory experiments and epidemiological research studies. In order to further comprehend the carcinogenic nature of ATZ, in vitro and in vivo models were established in this study to explore the effects of ATZ exposure on hepatocellular carcinoma. The results showed that after being treated with ATZ, the proliferation of H22 cells increased, and the tumor volume and amount of ascites were significantly increased in an in situ transplantation tumor model established in C57BL/6 mice compared to the control group. The expression of p53 was down-regulated, while the expression of cyclin-D1, VEGF, MMP2, Stat3 and C-myc was up-regulated in the ATZ-treated groups compared to the control group. These results indicate that ATZ might activate the Stat3 signaling pathway and promote the proliferation and invasion of hepatocellular carcinoma cells. ATZ exposure promotes tumor proliferation and metastasis.![]()
Collapse
Affiliation(s)
- Yong Tian
- School of Nursing
- Jilin University
- Changchun 130021
- China
- Basic Medical College
| | - Jingchun He
- Basic Medical College
- Jilin University
- Changchun 130021
- China
- The 4th Center Clinical College
| | - Nan Liu
- China-Japan Union Hospital
- Jilin University
- Changchun 130021
- China
- Qian Wei Hospital of Jilin Province
| | - Di Huang
- Basic Medical College
- Jilin University
- Changchun 130021
- China
- Tongji Medical College
| | - Zhuo Liu
- China-Japan Union Hospital
- Jilin University
- Changchun 130021
- China
| | - Yanrong Yang
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Junyu Chen
- The Second Affiliate Hospital
- Jilin University
- Changchun 130021
- China
| | - Benzheng Zhao
- The Second Affiliate Hospital
- Jilin University
- Changchun 130021
- China
| | - Shuhua Zhao
- The Second Affiliate Hospital
- Jilin University
- Changchun 130021
- China
| | - Bing Liang
- School of Nursing
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
40
|
Biçer A, Orlando S, Islam ABMMK, Gallastegui E, Besson A, Aligué R, Bachs O, Pujol MJ. ChIP-Seq analysis identifies p27(Kip1)-target genes involved in cell adhesion and cell signalling in mouse embryonic fibroblasts. PLoS One 2017; 12:e0187891. [PMID: 29155860 PMCID: PMC5695801 DOI: 10.1371/journal.pone.0187891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
The protein p27Kip1 (p27), a member of the Cip-Kip family of cyclin-dependent kinase inhibitors, is involved in tumorigenesis and a correlation between reduced levels of this protein in human tumours and a worse prognosis has been established. Recent reports revealed that p27 also behaves as a transcriptional regulator. Thus, it has been postulated that the development of tumours with low amounts of p27 could be propitiated by deregulation of transcriptional programs under the control of p27. However, these programs still remain mostly unknown. The aim of this study has been to define the transcriptional programs regulated by p27 by first identifying the p27-binding sites (p27-BSs) on the whole chromatin of quiescent mouse embryonic fibroblasts. The chromatin regions associated to p27 have been annotated to the most proximal genes and it has been considered that the expression of these genes could by regulated by p27. The identification of the chromatin p27-BSs has been performed by Chromatin Immunoprecipitation Sequencing (ChIP-seq). Results revealed that p27 associated with 1839 sites that were annotated to 1417 different genes being 852 of them protein coding genes. Interestingly, most of the p27-BSs were in distal intergenic regions and introns whereas, in contrast, its association with promoter regions was very low. Gene ontology analysis of the protein coding genes revealed a number of relevant transcriptional programs regulated by p27 as cell adhesion, intracellular signalling and neuron differentiation among others. We validated the interaction of p27 with different chromatin regions by ChIP followed by qPCR and demonstrated that the expressions of several genes belonging to these programs are actually regulated by p27. Finally, cell adhesion assays revealed that the adhesion of p27-/- cells to the plates was much higher that controls, revealing a role of p27 in the regulation of a transcriptional program involved in cell adhesion.
Collapse
Affiliation(s)
- Atilla Biçer
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Edurne Gallastegui
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Rosa Aligué
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS (Institut d'investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| |
Collapse
|
41
|
The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov 2017; 3:17063. [PMID: 28924490 PMCID: PMC5601385 DOI: 10.1038/cddiscovery.2017.63] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
The saturated medium-chain fatty-acid lauric acid (LA) has been associated to certain health-promoting benefits of coconut oil intake, including the improvement of the quality of life in breast cancer patients during chemotherapy. As it concerns the potential to hamper tumor growth, LA was shown to elicit inhibitory effects only in colon cancer cells. Here, we provide novel insights regarding the molecular mechanisms through which LA triggers antiproliferative and pro-apoptotic effects in both breast and endometrial cancer cells. In particular, our results demonstrate that LA increases reactive oxygen species levels, stimulates the phosphorylation of EGFR, ERK and c-Jun and induces the expression of c-fos. In addition, our data evidence that LA via the Rho-associated kinase-mediated pathway promotes stress fiber formation, which exerts a main role in the morphological changes associated with apoptotic cell death. Next, we found that the increase of p21Cip1/WAF1 expression, which occurs upon LA exposure in a p53-independent manner, is involved in the apoptotic effects prompted by LA in both breast and endometrial cancer cells. Collectively, our findings may pave the way to better understand the anticancer action of LA, although additional studies are warranted to further corroborate its usefulness in more comprehensive therapeutic approaches.
Collapse
|
42
|
Zhong X, Wang X, Zhou T, Jin Y, Tan S, Jiang C, Geng X, Li N, Shi H, Zeng Q, Yang Y, Yuan Z, Bao L, Liu S, Tian C, Peatman E, Li Q, Liu Z. Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:379-390. [PMID: 28601969 DOI: 10.1007/s10126-017-9757-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Hypoxic condition is common in aquaculture, leading to major economic losses. Genetic analysis of hypoxia tolerance, therefore, is not only scientifically significant, but also economically important. Catfish is generally regarded as being highly tolerant to low dissolved oxygen, but variations exist among various populations, strains, and species. In this study, we conducted a genome-wide association study (GWAS) using the catfish 250 K SNP array to identify quantitative trait locus (QTL) associated with tolerance to low dissolved oxygen in the channel catfish × blue catfish interspecific system. Four linkage groups (LG2, LG4, LG23, and LG29) were found to be associated with low oxygen tolerance in hybrid catfish. Multiple significant SNPs were found to be physically linked in genomic regions containing significant QTL for low oxygen tolerance on LG2 and LG23, and in those regions containing suggestively significant QTL on LG2, LG4, LG23, and LG29, suggesting that the physically linked SNPs were genuinely segregating and related with low oxygen tolerance. Analysis of genes within the associated genomic regions suggested that many of these genes were involved in VEGF, MAPK, mTOR, PI3K-Akt, P53-mediated apoptosis, and DNA damage checkpoint pathways. Comparative analysis indicated that most of the QTL at the species level, as analyzed by using the interspecific system, did not overlap with those identified from six strains of channel catfish, confirming the complexity of the genetic architecture of hypoxia tolerance in catfish.
Collapse
Affiliation(s)
- Xiaoxiao Zhong
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiaozhu Wang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Chen Jiang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Lisui Bao
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zhanjiang Liu
- Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
43
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
44
|
Significance of Wild-Type p53 Signaling in Suppressing Apoptosis in Response to Chemical Genotoxic Agents: Impact on Chemotherapy Outcome. Int J Mol Sci 2017; 18:ijms18050928. [PMID: 28452953 PMCID: PMC5454841 DOI: 10.3390/ijms18050928] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Our genomes are subject to potentially deleterious alterations resulting from endogenous sources (e.g., cellular metabolism, routine errors in DNA replication and recombination), exogenous sources (e.g., radiation, chemical agents), and medical diagnostic and treatment applications. Genome integrity and cellular homeostasis are maintained through an intricate network of pathways that serve to recognize the DNA damage, activate cell cycle checkpoints and facilitate DNA repair, or eliminate highly injured cells from the proliferating population. The wild-type p53 tumor suppressor and its downstream effector p21WAF1 (p21) are key regulators of these responses. Although extensively studied for its ability to control cell cycle progression, p21 has emerged as a multifunctional protein capable of downregulating p53, suppressing apoptosis, and orchestrating prolonged growth arrest through stress-induced premature senescence. Studies with solid tumors and solid tumor-derived cell lines have revealed that such growth-arrested cancer cells remain viable, secrete growth-promoting factors, and can give rise to progeny with stem-cell-like properties. This article provides an overview of the mechanisms by which p53 signaling suppresses apoptosis following genotoxic stress, facilitating repair of genomic injury under physiological conditions but having the potential to promote tumor regrowth in response to cancer chemotherapy.
Collapse
|
45
|
Peters D, Radine C, Reese A, Budach W, Sohn D, Jänicke RU. The DEAD-box RNA helicase DDX41 is a novel repressor of p21 WAF1/CIP1 mRNA translation. J Biol Chem 2017; 292:8331-8341. [PMID: 28348086 DOI: 10.1074/jbc.m116.772327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21 is an important player in stress pathways exhibiting both tumor-suppressive and oncogenic functions. Thus, expression of p21 has to be tightly controlled, which is achieved by numerous mechanisms at the transcriptional, translational, and posttranslational level. Performing immunoprecipitation of bromouridine-labeled p21 mRNAs that had been incubated before with cytoplasmic extracts of untreated HCT116 colon carcinoma cells, we identified the DEAD-box RNA helicase DDX41 as a novel regulator of p21 expression. DDX41 specifically precipitates with the 3'UTR, but not with the 5'UTR, of p21 mRNA. Knockdown of DDX41 increases basal and γ irradiation-induced p21 protein levels without affecting p21 mRNA expression. Conversely, overexpression of DDX41 strongly inhibits expression of a FLAG-p21 and a luciferase construct, but only in the presence of the p21 3'UTR. Together, these data suggest that this helicase regulates p21 expression at the translational level independent of the transcriptional activity of p53. However, knockdown of DDX41 completely fails to increase p21 protein levels in p53-deficient HCT116 cells. Moreover, posttranslational up-regulation of p21 achieved in both p53+/+ and p53-/- HCT116 cells in response to pharmaceutical inhibition of the proteasome (by MG-132) or p90 ribosomal S6 kinases (by BI-D1870) is further increased by knockdown of DDX41 only in p53-proficient but not in p53-deficient cells. Although our data demonstrate that DDX41 suppresses p21 translation without disturbing the function of p53 to directly induce p21 mRNA expression, this process indirectly requires p53, perhaps in the form of another p53 target gene or as a still undefined posttranscriptional function of p53.
Collapse
Affiliation(s)
- Dominik Peters
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany.
| |
Collapse
|
46
|
Gallastegui E, Biçer A, Orlando S, Besson A, Pujol MJ, Bachs O. p27 Kip1 represses the Pitx2-mediated expression of p21 Cip1 and regulates DNA replication during cell cycle progression. Oncogene 2017; 36:350-361. [PMID: 27270438 DOI: 10.1038/onc.2016.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/04/2016] [Accepted: 05/02/2016] [Indexed: 02/06/2023]
Abstract
The tumor suppressor p21 regulates cell cycle progression and peaks at mid/late G1. However, the mechanisms regulating its expression during cell cycle are poorly understood. We found that embryonic fibroblasts from p27 null mice at early passages progress slowly through the cell cycle. These cells present an elevated basal expression of p21 suggesting that p27 participates to its repression. Mechanistically, we found that p27 represses the expression of Pitx2 (an activator of p21 expression) by associating with the ASE-regulatory region of this gene together with an E2F4 repressive complex. Furthermore, we found that Pitx2 binds to the p21 promoter and induces its transcription. Finally, silencing Pitx2 or p21 in proliferating cells accelerates DNA replication and cell cycle progression. Collectively, these results demonstrate an unprecedented connection between p27, Pitx2 and p21 relevant for the regulation of cell cycle progression and cancer and for understanding human pathologies associated with p27 germline mutations.
Collapse
Affiliation(s)
- E Gallastegui
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - A Biçer
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - S Orlando
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - A Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France
- Université de Toulouse, Toulouse, France
- CNRS ERL5294, Toulouse, France
| | - M J Pujol
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - O Bachs
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| |
Collapse
|
47
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Moussa RS, Kovacevic Z, Richardson DR. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget 2016; 6:29694-711. [PMID: 26335183 PMCID: PMC4745756 DOI: 10.18632/oncotarget.5088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75(MDM2)) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
49
|
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget 2016; 6:30957-67. [PMID: 26436589 PMCID: PMC4741580 DOI: 10.18632/oncotarget.5143] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
p21CDKN1A is known as a potent inhibitor of cyclin-dependent kinase (CDK), which regulates cell cycle in response to various stimuli, including DNA damage, on the p53-dependent manner. Here we demonstrate that protein arginine methyltransferase 6 (PRMT6) methylates p21 at arginine 156 and promotes phosphorylation of threonine 145 on p21, resulting in the increase of cytoplasmic localization of p21. The cytoplasmic presence of p21 makes cancer cells more resistant to cytotoxic agents. Our results indicate that PRMT6 appears to be one of the key proteins to dysregulate p21 functions in human cancer, and targeting this pathway may be an appropriate strategy for development of anticancer drugs.
Collapse
Affiliation(s)
- Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Zhenzhong Deng
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115, Chicago, IL 60637, USA
| |
Collapse
|
50
|
McClure C, McPeak MB, Youssef D, Yao ZQ, McCall CE, El Gazzar M. Stat3 and C/EBPβ synergize to induce miR-21 and miR-181b expression during sepsis. Immunol Cell Biol 2016; 95:42-55. [PMID: 27430527 PMCID: PMC5209283 DOI: 10.1038/icb.2016.63] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/26/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) increase late sepsis immunosuppression and mortality in mice. We reported that microRNA (miR) 21 and miR-181b expression in Gr1+CD11b+ myeloid progenitors increase septic MDSCs in mice by arresting macrophage and dendritic cell differentiation. Here, we report how sepsis regulates miR-21 and miR-181b transcription. In vivo and in vitro binding studies have shown that C/EBPα transcription factor, which promotes normal myeloid cell differentiation, binds both miRNA promoters in Gr1+CD11b+ cells from sham mice. In contrast, in sepsis Gr1+CD11b+ MDSCs miR-21 and miR-181b promoters bind both transcription factors Stat3 and C/EBPβ, which co-imunoprecipitate as a single complex. Mechanistically, transcription factor Rb phosphorylation supports Stat3 and C/EBPβ accumulation at both miRNA promoters, and C/EBPβ or Stat3 depletion by siRNA in sepsis Gr1+CD11b+ MDSCs inhibits miR-21 and miR-181b expression. To further support this molecular path for MDSC accumulation, we found that Stat3 and C/EBP binding at miR-21 or miR-181b promoter was induced by IL-6, using a luciferase reporter gene transfection into naive Gr1+CD11b+ cells. Identifying how sepsis MDSCs are generated may inform new treatments to reverse sepsis immunosuppression.
Collapse
Affiliation(s)
- Clara McClure
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| | - Melissa B McPeak
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| | - Zhi Q Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| | - Charles E McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, TN, USA
| |
Collapse
|