1
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
2
|
Demsie DG, Altaye BM, Weldekidan E, Gebremedhin H, Alema NM, Tefera MM, Bantie AT. Galanin Receptors as Drug Target for Novel Antidepressants: Review. Biologics 2020; 14:37-45. [PMID: 32368008 PMCID: PMC7183331 DOI: 10.2147/btt.s240715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022]
Abstract
Galanin (GAL) is a 29-amino-acid neuropeptide that serves multiple physiological functions throughout the central and peripheral nervous system. Its role involves in a range of physiological and pathological functions including control of food intake, neuro-protection, neuronal regeneration, energy expenditure, reproduction, water balance, mood, nociception and various neuroendocrine functions. The use of currently available antidepressant drugs raises concerns regarding efficacy and onset of action; therefore, the need for antidepressants with novel mechanisms is increasing. Presently, various studies revealed the link between GAL and depression. Attenuation of depressive symptoms is achieved through inhibition of GalR1 and GalR3 and activation of GalR2. However, lack of receptor selectivity of ligands has limited the complete elucidation of effects of different receptors in depression-like behavior. Studies have suggested that GAL enhances the action of selective serotonin reuptake inhibitors (SSRIs) and promotes availability of transcription proteins. This review addresses the role of GAL, GAL receptors (GALRs) ligands including selective peptides, and the mechanism of ligand receptor interaction in attenuating depressive symptoms.
Collapse
Affiliation(s)
- Desalegn Getnet Demsie
- College of Medicine and Health Sciences, Department of Pharmacy, Adigrat University, Adigrat, Ethiopia
| | | | - Etsay Weldekidan
- College of Medicine and Health Sciences, Department of Pharmacy, Adigrat University, Adigrat, Ethiopia
| | - Hagazi Gebremedhin
- College of Medicine and Health Sciences, Department of Pharmacy, Adigrat University, Adigrat, Ethiopia
| | | | | | - Abere Tilahun Bantie
- College of Medicine and Health Sciences, Department of Anesthesia, Adigrat University, Adigrat, Ethiopia
| |
Collapse
|
3
|
Ziv NY, Tal M, Shavit Y. The transition from naïve to primed nociceptive state: A novel wind-up protocol in mice. Exp Neurol 2015; 275 Pt 1:133-42. [PMID: 26439312 DOI: 10.1016/j.expneurol.2015.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/05/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022]
Abstract
Wind-up (WU) is a progressive, frequency-dependent facilitation of spinal cord neurons in response to repetitive nociceptive stimulation of constant intensity. We identified a new WU-associated phenomenon in naïve mice (not exposed to noxious stimulation immediately prior to WU stimulation), which were subjected to a novel experimental protocol composed of three consecutive trains of WU stimulation. The 1st train produced a typical linear 'wind-up' curve as expected following a repeating series of stimuli; in addition, this 1st train sensitized ('primed') the nociceptive system so that the responses to two subsequent trains (inter-train interval of 10 min) were significantly amplified compared with the response to the 1st train. We named this augmented response potentiation-of-windup, or "PoW". The PoW phenomenon appears to be centrally mediated, as the augmented response was suppressed by administration of an NMDA receptor antagonist (MK-801) and by cutting the spinal cord. Furthermore, the PoW protocol is accompanied by enhanced pain behavior. The 'priming' effect of the 1st train could be mimicked by exposure to natural noxious stimuli prior to the PoW protocol. Presumably, the PoW phenomenon has not been previously reported due to a procedural reason: typically, WU protocols have been executed in 'primed' rather than naïve animals, i.e., animals exposed to nociceptive stimulation prior to the actual WU recording. Our findings indicate that the PoW paradigm can distinguish between 'naïve' and 'primed' states, suggesting its use as a tool for the assessment of central sensitization.
Collapse
Affiliation(s)
- Nadav Y Ziv
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - Michael Tal
- Department of Medical Neurobiology, Faculty of Medicine and Dentistry, The Hebrew University of Jerusalem, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Israel
| | - Yehuda Shavit
- Department of Psychology, The Hebrew University of Jerusalem, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
4
|
de Freitas RM, Gomes KN, Saldanha GB. Neuropharmacological effects of lipoic acid and ubiquinone on the mRNA level of interleukin-1β and acetylcholinesterase activity in rat hippocampus after seizures. Fundam Clin Pharmacol 2011; 25:354-61. [DOI: 10.1111/j.1472-8206.2010.00838.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
The immune system defends the organism against invading pathogens. In recent decades it became evident that elimination of such pathogens, termination of inflammation, and restoration of host homeostasis all depend on bidirectional crosstalk between the immune system and the neuroendocrine system. This crosstalk is mediated by a complex network of interacting molecules that modulates inflammation and cell growth. Among these mediators are neuropeptides released from neuronal and non-neuronal components of the central and peripheral nervous systems, endocrine tissues, and cells of the immune system. Neuropeptide circuitry controls tissue inflammation and maintenance, and an imbalance of pro- and anti-inflammatory neuropeptides results in loss of host homeostasis and triggers inflammatory diseases. The galanin peptide family is undoubtedly involved in the regulation of inflammatory processes, and the aim of this review is to provide up-to-date knowledge from the literature concerning the regulation of galanin and its receptors in the nervous system and peripheral tissues in experimental models of inflammation. We also highlight the effects of galanin and other members of the galanin peptide family on experimentally induced inflammation and discuss these data in light of an anti-inflammatory role for this family of peptides.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology, Paracelsus Medical University Salzburg, Muellner-Hauptstrasse 48, A-5020 Salzburg, Austria
| | | |
Collapse
|
6
|
Inflammatory cytokines IL-1β and TNF-α regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN Neuro 2009; 1:AN20090009. [PMID: 19570027 PMCID: PMC2695582 DOI: 10.1042/an20090009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1β and TNF-α (tumour necrosis factor-α), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.
Collapse
|
7
|
Sandrini G, Serrao M, Rossi P, Romaniello A, Cruccu G, Willer JC. The lower limb flexion reflex in humans. Prog Neurobiol 2005; 77:353-95. [PMID: 16386347 DOI: 10.1016/j.pneurobio.2005.11.003] [Citation(s) in RCA: 384] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
The flexion or flexor reflex (FR) recorded in the lower limbs in humans (LLFR) is a widely investigated neurophysiological tool. It is a polysynaptic and multisegmental spinal response that produces a withdrawal of the stimulated limb and resembles (having several features in common) the hind-paw FR in animals. The FR, in both animals and humans, is mediated by a complex circuitry modulated at spinal and supraspinal level. At rest, the LLFR (usually obtained by stimulating the sural/tibial nerve and by recording from the biceps femoris/tibial anterior muscle) appears as a double burst composed of an early, inconstantly present component, called the RII reflex, and a late, larger and stable component, called the RIII reflex. Numerous studies have shown that the afferents mediating the RII reflex are conveyed by large-diameter, low-threshold, non-nociceptive A-beta fibers, and those mediating the RIII reflex by small-diameter, high-threshold nociceptive A-delta fibers. However, several afferents, including nociceptive and non-nociceptive fibers from skin and muscles, have been found to contribute to LLFR activation. Since the threshold of the RIII reflex has been shown to correspond to the pain threshold and the size of the reflex to be related to the level of pain perception, it has been suggested that the RIII reflex might constitute a useful tool to investigate pain processing at spinal and supraspinal level, pharmacological modulation and pathological pain conditions. As stated in EFNS guidelines, the RIII reflex is the most widely used of all the nociceptive reflexes, and appears to be the most reliable in the assessment of treatment efficacy. However, the RIII reflex use in the clinical evaluation of neuropathic pain is still limited. In addition to its nocifensive function, the LLFR seems to be linked to posture and locomotion. This may be explained by the fact that its neuronal circuitry, made up of a complex pool of interneurons, is interposed in motor control and, during movements, receives both peripheral afferents (flexion reflex afferents, FRAs) and descending commands, forming a multisensorial feedback mechanism and projecting the output to motoneurons. LLFR excitability, mediated by this complex circuitry, is finely modulated in a state- and phase-dependent manner, rather as we observe in the FR in animal models. Several studies have demonstrated that LLFR excitability may be influenced by numerous physiological conditions (menstrual cycle, stress, attention, sleep and so on) and pathological states (spinal lesions, spasticity, Wallenberg's syndrome, fibromyalgia, headaches and so on). Finally, the LLFR is modulated by several drugs and neurotransmitters. In summary, study of the LLFR in humans has proved to be an interesting functional window onto the spinal and supraspinal mechanisms of pain processing and onto the spinal neural control mechanisms operating during posture and locomotion.
Collapse
Affiliation(s)
- Giorgio Sandrini
- University Center for Adaptive Disorders and Headache, IRCCS C. Mondino Institute of Neurology Foundation, University of Pavia, Via Mondino 2, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Xiong W, Gao L, Sapra A, Yu LC. Antinociceptive role of galanin in the spinal cord of rats with inflammation, an involvement of opioid systems. ACTA ACUST UNITED AC 2005; 132:85-90. [PMID: 16214241 DOI: 10.1016/j.regpep.2005.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 09/08/2005] [Indexed: 11/17/2022]
Abstract
The present study investigated the role of galanin in the transmission of nociceptive information in the spinal cord of rats with inflammation. Bilateral decreases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation were observed after acute inflammation induced by injection of carrageenan into the plantar region of the rat left hindpaw. Intrathecal injection of galanin induced significant increases in the HWLs to thermal and mechanical stimulation in rats with inflammation. The galanin-induced antinociceptive effect was more pronounced in rats with inflammation than that in intact rats. The antinociceptive effect of galanin was partly inhibited by intrathecal injection of naloxone. Furthermore, intrathecal administration of galantide, an antagonist of galanin receptor, could attenuate the antinociceptive effect induced by intraperitoneal injection of morphine, suggesting an involvement of opioid systems in the galanin-induced antinociception. The results indicate that galanin plays an important role in the transmission of nociceptive information in the spinal cord of rats with inflammation, and opioid systems are involved in the galanin-induced antinociception.
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Neurobiology and National Laboratory of Biomembrane and Membrane Biotechnology, College Of Life Science, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
9
|
Holmes FE, Mahoney SA, Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides 2005; 39:191-9. [PMID: 15944011 DOI: 10.1016/j.npep.2005.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The neuropeptide galanin is present at high levels within the dorsal root ganglia (DRG) and spinal cord during development and after peripheral nerve damage in the adult. This pattern of expression suggests that it may play a role in the adaptive response of the peripheral nervous system (PNS) to injury. Several experimental paradigms have demonstrated that galanin modulates pain transmission, particularly after nerve injury. In our laboratory we have used a transgenic approach to further elucidate the functions of galanin within the somatosensory system. We have generated mice which over-express galanin (either inducibly after nerve injury, or constitutively), and knock-out (KO) mice, in which galanin is absent in all cells, throughout development and in the adult. Analysis of the nociceptive behaviour of the galanin over-expressing animals, before and after nerve injury, supports the view that galanin is an inhibitory neuromodulator of spinal cord transmission. In apparent contradiction to these findings, galanin KO animals fail to develop allodynia and hyperalgesia after nerve injury. However, further studies have shown that galanin is critical for the developmental survival of a subset of small diameter, unmyelinated sensory neurons that are likely to be nociceptors. This finding may well explain the lack of neuropathic pain-like behaviour after injury in the KO animals. Furthermore, the developmental survival role played by galanin is recapitulated in the adult where the peptide is required for optimal neuronal regeneration after injury, and in the hippocampus where it plays a neuroprotective role after excitotoxic injury.
Collapse
Affiliation(s)
- F E Holmes
- LINE, DHB, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
10
|
Kimura S, Tanabe M, Honda M, Ono H. Enhanced Wind-Up of the C-Fiber-Mediated Nociceptive Flexor Reflex Movement Following Painful Diabetic Neuropathy in Mice. J Pharmacol Sci 2005; 97:195-202. [PMID: 15684569 DOI: 10.1254/jphs.fp0040785] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We examined wind-up of the nociceptive flexor withdrawal responses in diabetic mice that had developed tactile allodynia after treatment with streptozotocin (STZ). In control and STZ-treated mice, simultaneous activation of Adelta- and C-fibers by electrical stimuli at C-fiber intensity delivered to the ventral aspect of the toe elicited a biphasic withdrawal reflex composed of short- and long-latency movements of the ipsilateral hind paw that were respectively mediated by activation of Adelta- and C-fibers. There were no significant differences between control and diabetic mice in the activation threshold of each reflex movement or the amplitude of reflexes elicited by various stimulus intensities. However, a repetitive conditioning stimulus (CS) elicited significantly greater wind-up of the C-fiber-mediated movement and early saturation of wind-up in diabetic mice. In both control and diabetic mice, the CS elicited no or occasionally slight wind-up of the A delta-fiber-mediated movement. Moreover, post-CS facilitation, which reflects the prolonged excitability increase, was observed in both Adelta-fiber- and C-fiber-mediated movements of control mice, whereas significant post-CS facilitation was only obtained in the C-fiber-mediated movement of diabetic mice, which may reflect supraspinal descending influences. Such changes in the excitability of spinal neurons in diabetic mice may represent some aspect of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Satoko Kimura
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | |
Collapse
|
11
|
Jinks SL, Antognini JF, Dutton RC, Carstens E, Eger EI. Isoflurane depresses windup of C fiber-evoked limb withdrawal with variable effects on nociceptive lumbar spinal neurons in rats. Anesth Analg 2004; 99:1413-1419. [PMID: 15502040 DOI: 10.1213/01.ane.0000135635.32227.da] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Windup is a progressive increase in responses of nociceptive spinal cord neurons to repeated electrical C fiber stimulation. We hypothesized that isoflurane would depress windup at approximately the minimum alveolar anesthetic concentration (MAC) required to suppress purposeful movement in response to noxious stimulation. We recorded windup responses in single lumbar spinal neurons (n = 17) to a series of 15 repetitive electrical stimuli delivered at 1 Hz to the hindpaw at C fiber strength; hindpaw withdrawal force was simultaneously recorded. The total number of action potentials per 15 stimuli (mean +/- sem as a percentage of each neuron's maximal response) was 83% +/- 5%, 84% +/- 5%, 67% +/- 7%, and 57% +/- 8% at 0.7, 0.9, 1.1, and 1.4 MAC, respectively. The 0.9 and 1.1 MAC values differed significantly from each other, whereas the 0.7 and 0.9 MAC values differed from the 1.4 MAC value (P < 0.05). The reduced firing was attributed to a depression of the initial C fiber-evoked responses in most units, and a reduction in windup slope over the initial 5 stimuli in 6 units. Muscle force was 67%, 11%, and 4% of the 0.7 MAC value at 0.9, 1.1, and 1.4 MAC, respectively. Isoflurane depressed excitability and variably affected windup of lumbar spinal cord neurons, while uniformly depressing windup of limb withdrawals in a concentration-dependent manner.
Collapse
Affiliation(s)
- Steven L Jinks
- *Department of Anesthesiology and Pain Medicine, and †Section of Neurobiology, Physiology, and Behavior, University of California, Davis; and ‡Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
12
|
Jimenez-Andrade JM, Zhou S, Du J, Yamani A, Grady JJ, Castañeda-Hernandez G, Carlton SM. Pro-nociceptive role of peripheral galanin in inflammatory pain. Pain 2004; 110:10-21. [PMID: 15275747 DOI: 10.1016/j.pain.2004.02.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 01/15/2004] [Accepted: 02/23/2004] [Indexed: 01/30/2023]
Abstract
We investigated the peripheral function of galanin (GAL) in capsaicin (CAP)-induced inflammatory pain. Intraplantar GAL (0.1 ng/microl) alone does not produce nociceptive behaviors. However, ipsilateral but not contralateral GAL at low doses (0.1 ng/microl) significantly increases CAP-evoked nociceptive behaviors approximately twofold. This effect is attributed to activation of peripheral GAL receptor 2 (GalR2) because a selective GalR2 agonist (AR-M1896) mimics the pro-nociceptive actions of GAL. Recording from nociceptors confirms that GAL does not modify activity of nociceptors but markedly enhances CAP-induced excitation of these fibers. CAP produces a discharge rate of 0.15+/-0.05 impulses/s which increases to 0.54+/-0.17 impulses/s following CAP+GAL. Immunohistochemical studies indicate GalR2 are highly expressed (65.8%) in L5 dorsal root ganglion (DRG) cells. Also, 44.5% GalR2-positive DRG neurons label for the capsaicin receptor (vanilloid receptor 1, VR1) while 61.7% of VR1-positive DRG neurons label for GalR2; 28.1% of total DRG neurons are double-labeled supporting the hypothesis that GAL-induced effects are mediated by GalR2 on capsaicin-sensitive primary afferents. Furthermore, 68.0% unmyelinated and 23.1% myelinated digital nerve axons label for GalR2, indicating the receptor is transported out to the periphery. Immunostaining for GAL peptide in digital nerves labels 46.4% unmyelinated and 27.1% myelinated axons, suggesting that afferents are a major source of ligand for peripheral GalR2. These results suggest that peripheral GAL has an excitatory role in inflammatory pain, likely mediated by peripheral GalR2 and that GAL can modulate VR1 function.
Collapse
Affiliation(s)
- Juan Miguel Jimenez-Andrade
- Seccion Externa de Farmacologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico, D.F. Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Flatters SJL, Fox AJ, Dickenson AH. In vivo and in vitro effects of peripheral galanin on nociceptive transmission in naive and neuropathic states. Neuroscience 2003; 116:1005-12. [PMID: 12617941 DOI: 10.1016/s0306-4522(02)00947-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Galanin is widely distributed in the nervous system and is consistently upregulated in both dorsal root ganglion and spinal neurones by peripheral nerve injury. This study investigates the peripheral effects of galanin on nociceptive neurones using in vitro and in vivo electrophysiological techniques in naive and neuropathic rats. Using an in vitro skin-nerve preparation recording from single nociceptive fibres, galanin (1 microM) significantly inhibited firing induced by noxious heat in 65% of fibres examined. In the remaining 35% of fibres, galanin (1 microM) induced a facilitation of the responses to noxious heat. To examine the effect of peripheral galanin in vivo, extracellular recordings from convergent dorsal horn neurones were made in anaesthetised naive sham-operated and spinal nerve-ligated (SNL) rats. Injection of galanin (0.1-10 microg) into hindpaw receptive fields inhibited responses to innocuous mechanical, noxious mechanical and noxious heat stimuli in a proportion of neurones in each animal group and facilitated the remaining neurones. However, a higher proportion of neurones (80-90%) was inhibited by peripheral galanin administration in SNL rats compared with naive (45-55%) and sham (70-80%) rats. These results show that galanin can have both excitatory and inhibitory effects on peripheral sensory neurones, perhaps reflecting differential receptor activation, and that the proportion of these receptors may change following peripheral neuropathy.
Collapse
Affiliation(s)
- S J L Flatters
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
14
|
Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat 2002; 24:257-68. [PMID: 12406501 DOI: 10.1016/s0891-0618(02)00068-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent molecular cloning studies have established the existence of a third rat galanin receptor subtype, GalR3, however its precise distribution in the mammalian central nervous system (CNS) is not well established. In the present study, we examined the regional and cellular distribution of GalR3 mRNA in the CNS of the rat by in situ hybridization. Our findings indicate that GALR3 mRNA expression in the rat brain is discrete and highly restricted, concentrated mainly in the preoptic/hypothalamic area. Within the hypothalamus, GalR3 expression was confined to the paraventricular, ventromedial and dorsomedial hypothalamic nuclei. In addition to these hypothalamic nuclei, GalR3 mRNA-expressing cells were observed in the medial septum/diagonal band of Broca complex, the bed nucleus of the stria terminalis, the medial amygdaloid nucleus, the periaqueductal gray, the lateral parabrachial nucleus, the dorsal raphe nucleus, the locus coeruleus, the medial medullary reticular formation and in one of the circumventricular organs, the subfornical organ. In the spinal cord, a faint but specific ISH signal was observed over the laminae I-II with a few moderately labeled cells distributed in laminae V and X. The neuroanatomical distribution of GalR3 suggests it might be involved in mediating documented effects of galanin on food intake, fluid homeostasis, cardiovascular function and nociception.
Collapse
Affiliation(s)
- Françoise Mennicken
- AstraZeneca R&D Montreal, 7171 Frederick-Banting, St. Laurent, Quebec, Canada H4S 1Z9.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Galanin, a 29-amino-acid peptide expressed in dorsal root ganglia (DRG) and spinal dorsal horn interneurones, is regulated by nerve injury and peripheral inflammation. The functional significance of such regulation has been subject to intense studies, including the analysis of galanin null mice, with the production of apparently conflicting results. Here, we suggest that upregulation of galanin in DRG neurones following nerve injury results in antinociception via stimulation of galanin GAL1 receptors on dorsal horn neurones, and that the pro-nociceptive effect of galanin is related to presynaptic galanin GAL2 receptors on primary afferents. A selective GAL1 receptor agonist could therefore be valuable for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Dept of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
16
|
Wiesenfeld-Hallin Z, Xu XJ. Neuropeptides in neuropathic and inflammatory pain with special emphasis on cholecystokinin and galanin. Eur J Pharmacol 2001; 429:49-59. [PMID: 11698026 DOI: 10.1016/s0014-2999(01)01305-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuropeptides present in primary afferents and the dorsal horn of the spinal cord have an important role in the mediation of nociceptive input under normal conditions. Under pathological conditions, such as chronic inflammation or following peripheral nerve injury, the production of peptides and peptide receptors is dramatically altered, leading to a number of functional consequences. In this review, the role of two neuropeptides that undergo such altered expression under pathological conditions, cholecystokinin (CKK) and galanin, is reviewed.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Department of Medical Laboratory Sciences and Technology, Section of Clinical Neurophysiology, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | |
Collapse
|
17
|
Kerr BJ, Gupta Y, Pope R, Thompson SWN, Wynick D, McMahon SB. Endogenous galanin potentiates spinal nociceptive processing following inflammation. Pain 2001; 93:267-277. [PMID: 11514086 DOI: 10.1016/s0304-3959(01)00326-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have undertaken a series of experiments using galanin null mutant mice to better define the role of endogenous galanin in spinal excitability following inflammation and in response to centrally sensitizing stimuli. We have employed a behavioural paradigm, the formalin test, as a model of tonic nociception in both galanin knock-out (gal-/-) and wild-type (gal+/+) mice. In this model, we find that gal-/- mice are markedly hypo-responsive, especially in the second phase response. Additionally, we have examined the thermal hyperalgesia which develops following peripheral injection of carrageenan into the plantar surface of one hindpaw. In this inflammatory paradigm, thermal hyperalgesia is markedly attenuated in gal-/- mice. These behavioural findings suggest that endogenous galanin contributes to nociceptive processing. We have tested this hypothesis further by employing an electrophysiological measure of spinal excitability, the flexor withdrawal reflex in gal-/- and gal+/+ mice. We found no differences in acute reflex responses to single stimuli at C-fibre strength or in the time course and magnitude of wind-up induced by a short conditioning train between non-inflamed gal+/+ and gal-/- mice. However, the long-lasting post-conditioning enhancement of reflex excitability was only seen in gal+/+ mice. Moreover, following carrageenan inflammation, there was a marked increase in spinal nociceptive reflex excitability in the inflamed gal+/+ mice, but this enhanced excitability was absent in gal-/- animals. These findings illustrate that endogenous galanin is necessary for the full expression of central sensitization, and as such, plays a critical role in the development of hyperalgesia following peripheral tissue injury.
Collapse
Affiliation(s)
- Bradley J Kerr
- Centre for Neuroscience Research, Guy's, King's and St. Thomas' School of Biomedical Sciences, Kings College, London Bridge, London SE1 1UL, UK Department of Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
18
|
Zhao X, Bausano B, Pike BR, Newcomb-Fernandez JK, Wang KK, Shohami E, Ringger NC, DeFord SM, Anderson DK, Hayes RL. TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res 2001; 64:121-31. [PMID: 11288141 DOI: 10.1002/jnr.1059] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary septo-hippocampal cell cultures were incubated in varying concentrations of tumor necrosis factor (TNF-alpha; 0.3-500 ng/ml) to examine proteolysis of the cytoskeletal protein alpha-spectrin (240 kDa) to a signature 145 kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3. The effects of TNF-alpha incubation on morphology and cell viability were assayed by fluorescein diacetate-propidium iodide (FDA-PI) staining, assays of lactate dehydrogenase (LDH) release, nuclear chromatin alterations (Hoechst 33258), and internucleosomal DNA fragmentation. Incubation with varying concentrations of TNF-alpha produced rapid increases in LDH release and nuclear PI uptake that were sustained over 48 hr. Incubation with 30 ng/ml TNF-alpha yielded maximal, 3-fold, increase in LDH release and was associated with caspase-specific 120-kDa fragment but not calpain-specific 145-kDa fragment as early as 3.5 hr after injury. Incubation with the pan-caspase inhibitor, carbobenzosy- Asp-CH(2)-OC (O)-2-6-dichlorobenzene (Z-D-DCB, 50-140 microM) significantly reduced LDH release produced by TNF-alpha. Apoptotic-associated oligonucleosomal-sized DNA fragmentation on agarose gels was detected from 6 to 72 hr after exposure to TNF-alpha. Histochemical changes included chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Results of this study suggest TNF-alpha may induce caspase-3 activation but not calpain activation in septo-hippocampal cultures and that this activation of caspase-3 at least partially contributes to TNF-alpha-induced apoptosis.
Collapse
Affiliation(s)
- X Zhao
- The Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kerr BJ, Wynick D, Thompson SW, McMahon SB. The biological role of galanin in normal and neuropathic states. PROGRESS IN BRAIN RESEARCH 2001; 129:219-30. [PMID: 11098692 DOI: 10.1016/s0079-6123(00)29016-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- B J Kerr
- Neuroscience Research Centre, Guy's, King's and St Thomas' School of Biomedical Sciences, King's College London, UK.
| | | | | | | |
Collapse
|
20
|
Wynick D, Thompson SW, McMahon SB. The role of galanin as a multi-functional neuropeptide in the nervous system. Curr Opin Pharmacol 2001; 1:73-7. [PMID: 11712539 DOI: 10.1016/s1471-4892(01)00006-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuropeptide galanin is expressed developmentally in the DRG and is rapidly up-regulated 120-fold after peripheral nerve section in the adult. The generation and study of galanin knockout mice has indicated that the peptide is critical to the development and function of specific subsets of neurons in the central and peripheral nervous system. These data have important implications for the understanding, and potential therapeutic treatment, of sensory neuropathies and a number of neurological diseases, including Alzheimer's disease and epilepsy.
Collapse
Affiliation(s)
- D Wynick
- Department of Medicine, Bristol University, UK
| | | | | |
Collapse
|
21
|
Xu XJ, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z. Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 2000; 34:137-47. [PMID: 11021973 DOI: 10.1054/npep.2000.0820] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Galanin is a peptide consisting of 29 or 30 (in humans) amino acids that is present in sensory and spinal dorsal horn neurons. Endogenous galanin may have an important modulatory function on nociceptive input at the spinal level. In addition, exogenously administered galanin exerts complex effects on spinal nociceptive transmission, where inhibitory action appears to predominate. Peripheral nerve injury and inflammation, conditions associated with chronic pain, upregulate the synthesis of galanin in sensory neurons and spinal cord neurons, respectively. Hence, the sensory effect of galanin may be increased under these conditions, raising the possibility that modulation of the activity of the galanin system may produce antinociception.
Collapse
Affiliation(s)
- X J Xu
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institutet, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
22
|
Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Prog Neurobiol 2000; 61:169-203. [PMID: 10704997 DOI: 10.1016/s0301-0082(99)00051-9] [Citation(s) in RCA: 515] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wind-up is a frequency-dependent increase in the excitability of spinal cord neurones, evoked by electrical stimulation of afferent C-fibres. Although it has been studied over the past thirty years, there are still uncertainties about its physiological meaning. Glutamate (NMDA) and tachykinin NK1 receptors are required to generate wind-up and therefore a positive modulation between these two receptor types has been suggested by some authors. However, most drugs capable of reducing the excitability of spinal cord neurones, including opioids and NSAIDs, can also reduce or even abolish wind-up. Thus, other theories involving synaptic efficacy, potassium channels, calcium channels, etc. have also been proposed for the generation of this phenomenon. Whatever the mechanisms involved in its generation, wind-up has been interpreted as a system for the amplification in the spinal cord of the nociceptive message that arrives from peripheral nociceptors connected to C-fibres. This probably reflects the physiological system activated in the spinal cord after an intense or persistent barrage of afferent nociceptive impulses. On the other hand, wind-up, central sensitisation and hyperalgesia are not the same phenomena, although they may share common properties. Wind-up can be an important tool to study the processing of nociceptive information in the spinal cord, and the central effects of drugs that modulate the nociceptive system. This paper reviews the physiological and pharmacological data on wind-up of spinal cord neurones, and the perceptual correlates of wind-up in human subjects, in the context of its possible relation to the triggering of hyperalgesic states, and also the multiple factors which contribute to the generation of wind-up.
Collapse
MESH Headings
- Afferent Pathways/physiology
- Analgesics/pharmacology
- Anesthetics, Local/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Cats
- Humans
- Hyperalgesia/physiopathology
- Inflammation
- Ion Transport/drug effects
- Models, Neurological
- Morphine/pharmacology
- Nerve Fibers/drug effects
- Nerve Fibers/physiology
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Neuralgia/physiopathology
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neuropeptides/physiology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/physiopathology
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Neurokinin-1/drug effects
- Receptors, Neurokinin-1/physiology
- Reflex/physiology
- Spinal Cord/cytology
- Spinal Cord/physiopathology
- Substance P/physiology
- Synaptic Transmission/drug effects
- Viscera/innervation
Collapse
Affiliation(s)
- J F Herrero
- Departamento de Fisiología, Edificio de Medicina, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | |
Collapse
|
23
|
Abstract
Galanin-like immunoreactivity and galanin receptors are found in dorsal root ganglion (DRG) cells and in dorsal horn interneurons, suggesting that this neuropeptide may have a role in sensory transmission and modulation at the spinal level. Expression of galanin or galanin receptors in the DRG and spinal cord are altered, sometimes in a dramatic fashion, by peripheral nerve injury or inflammation. Under normal conditions, galanin occurs in a small population of primary sensory neurons as well as in spinal interneurons. However, following peripheral nerve injury or inflammation, expression of galanin in primary afferents and spinal cord is upregulated. We examined the role of galanin in spinal processing of nociceptive information under normal and pathologic conditions in a large series of electrophysiologic and behavioral studies. Results suggest that under normal conditions galanin exerts tonic inhibition of nociceptive input to the central nervous system. After peripheral nerve injury the inhibitory control exerted by endogenous galanin, probably released from DRG neurons, is increased. During inflammation, galanin presumably released from dorsal horn interneurons also exerts an inhibitory function. Thus, stable galanin agonists may be useful in the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Z Wiesenfeld-Hallin
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden.
| | | |
Collapse
|
24
|
Xu IS, Luo L, Ji RR, Hökfelt T, Xu XJ, Wiesenfeld-Hallin Z. The effect of intrathecal neuropeptide Y on the flexor reflex in rats after carrageenan-induced inflammation. Neuropeptides 1998; 32:447-52. [PMID: 9845006 DOI: 10.1016/s0143-4179(98)90070-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined the effects of intrathecal (i.t.) administration of neuropeptide Y (NPY) on the excitability of the flexor reflex in normal rats and 24 h after inflammation induced by subcutaneous carrageenan. In normal rats, i.t. NPY at low doses (10 and 100 ng) caused a brief facilitation of the flexor reflex with no subsequent depression. At higher doses (1 and 10 microg), the effect of NPY was mainly inhibitory, causing substantial and usually prolonged depression of the flexor reflex. At 24 h after the injection of carrageenan, when inflammation was at its peak, the magnitude of the reflex was increased and discharge duration became prolonged. I.t. NPY produced similar pattern of dose-dependent facilitatory and depressive effects on the flexor reflex. The facilitatory effect of i.t. NPY, particularly for the higher doses, was significantly enhanced in inflamed rats compared to normals. In contrast, the depressive effect of high doses of i.t. NPY was unchanged. These data suggest that the changes in levels of NPY and NPY receptors in the spinal cord known to occur after inflammation, are associated with an increased excitatory effect of this peptide.
Collapse
Affiliation(s)
- I S Xu
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|