1
|
Mohammadshirazi A, Apicella R, Zylberberg BA, Mazzone GL, Taccola G. Suprapontine Structures Modulate Brainstem and Spinal Networks. Cell Mol Neurobiol 2023:10.1007/s10571-023-01321-z. [PMID: 36732488 DOI: 10.1007/s10571-023-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Several spinal motor output and essential rhythmic behaviors are controlled by supraspinal structures, although their contribution to neuronal networks for respiration and locomotion at birth still requires better characterization. As preparations of isolated brainstem and spinal networks only focus on local circuitry, we introduced the in vitro central nervous system (CNS) from neonatal rodents to simultaneously record a stable respiratory rhythm from both cervical and lumbar ventral roots (VRs).Electrical pulses supplied to multiple sites of brainstem evoked distinct VR responses with staggered onset in the rostro-caudal direction. Stimulation of ventrolateral medulla (VLM) resulted in higher events from homolateral VRs. Stimulating a lumbar dorsal root (DR) elicited responses even from cervical VRs, albeit small and delayed, confirming functional ascending pathways. Oximetric assessments detected optimal oxygen levels on brainstem and cortical surfaces, and histological analysis of internal brain structures indicated preserved neuron viability without astrogliosis. Serial ablations showed precollicular decerebration reducing respiratory burst duration and frequency and diminishing the area of lumbar DR and VR potentials elicited by DR stimulation, while pontobulbar transection increased the frequency and duration of respiratory bursts. Keeping legs attached allows for expressing a respiratory rhythm during hindlimb stimulation. Trains of pulses evoked episodes of fictive locomotion (FL) when delivered to VLM or to a DR, the latter with a slightly better FL than in isolated cords.In summary, suprapontine centers regulate spontaneous respiratory rhythms, as well as electrically evoked reflexes and spinal network activity. The current approach contributes to clarifying modulatory brain influences on the brainstem and spinal microcircuits during development. Novel preparation of the entire isolated CNS from newborn rats unveils suprapontine modulation on brainstem and spinal networks. Preparation views (A) with and without legs attached (B). Successful fictive respiration occurs with fast dissection from P0-P2 rats (C). Decerebration speeds up respiratory rhythm (D) and reduces spinal reflexes derived from both ventral and dorsal lumbar roots (E).
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Rosamaria Apicella
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy
| | - Benjamín A Zylberberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT)-CONICET - Universidad Austral, Av. Pte. Perón 1500, Pilar, Buenos Aires, Argentina
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,Applied Neurophysiology and Neuropharmacology Lab, Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, Udine, UD, Italy.
| |
Collapse
|
2
|
Highlander MM, Allen JM, Elbasiouny SM. Meta-analysis of biological variables' impact on spinal motoneuron electrophysiology data. J Neurophysiol 2020; 123:1380-1391. [PMID: 32073942 DOI: 10.1152/jn.00378.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Experimental, methodological, and biological variables must be accounted for statistically to maximize accuracy and comparability of published neuroscience data. However, accounting for all variables is nigh impossible. Thus we aimed to identify particularly influential variables within published neurological data, from cat, rat, and mouse studies, via a robust statistical process. Our goal was to develop tools to improve rigor in the collection and analysis of data. We strictly constrained experimental and methodological variables and then assessed four key biological variables within motoneuron research: species, age, sex, and cell type. We quantified intraexperimental and interexperimental variances in 11 commonly reported electrophysiological properties of spinal motoneurons. We first assessed variances without accounting for biological variables and then reassessed them while accounting for all four variables. We next assessed variances with all possible combinations of these four variables. We concluded that some motoneuron properties have low intraexperimental, but high interexperimental, variance; that individual motoneuron properties are impacted differently by biological variables; and that some unexplained variances still remain. We report here the optimal combinations of biological variables to reduce interexperimental variance for all 11 parameters. We also rank each parameter by intra- and interexperimental consistency. We expect these results to assist with design of experimental and analytical methods, and to support accuracy in simulations. Furthermore, although demonstrated on spinal motoneuron electrophysiology literature, our approach is applicable to biological data from all fields of neuroscience. This approach represents an important aid to experimental design, comparison of reported data, and reduction of unexplained variance in neuroscience data.NEW & NOTEWORTHY Our meta-analysis shows the impact of species, age, sex, and cell type on lumbosacral motoneuron electrophysiological properties by thoroughly quantifying variances across literature for the first time. We quantify the variances of 11 motoneuron properties with consideration of biological variables, thus providing specific insights for motoneuron modelers and experimenters, and providing a general methodological template for the quantification of variance in neurological data with the consideration of any experimental, methodological, or biological variables of interest.
Collapse
Affiliation(s)
- Morgan M Highlander
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - John M Allen
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio.,Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
3
|
Sonner PM, Ladle DR. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord. J Neurophysiol 2013; 109:2118-28. [PMID: 23343895 DOI: 10.1152/jn.00783.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore, we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses with observations made after 1 wk of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at 1 wk postnatally. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, USA
| | | |
Collapse
|
4
|
Primary afferent terminals acting as excitatory interneurons contribute to spontaneous motor activities in the immature spinal cord. J Neurosci 2011; 31:10184-8. [PMID: 21752994 DOI: 10.1523/jneurosci.0068-11.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patterned, spontaneous activity plays a critical role in the development of neuronal networks. A robust spontaneous activity is observed in vitro in spinal cord preparations isolated from immature rats. The rhythmic ventral root discharges rely mainly on the depolarizing/excitatory action of GABA and glycine early during development, whereas at later stages glutamate drive is primarily responsible for the rhythmic activity and GABA/glycine are thought to play an inhibitory role. However, rhythmic discharges mediated by the activation of GABA(A) receptors are recorded from dorsal roots (DRs). In the present study, we used the in vitro spinal cord preparation of neonatal rats to identify the relationship between discharges that are conducted antidromically along DRs and the spontaneous activity recorded from lumbar motoneurons. We show that discharges in DRs precede those in ventral roots and that primary afferent depolarizations (PADs) start earlier than EPSPs in motoneurons. EPSP-triggered averaging revealed that the action potentials propagate not only antidromically in the DR but also centrally and trigger EPSPs in motoneurons. Potentiating GABAergic antidromic discharges by diazepam increased the EPSPs recorded from motoneurons; conversely, blocking DR bursts markedly reduced these EPSPs. High intracellular concentrations of chloride are maintained in primary afferent terminals by the sodium-potassium-chloride cotransporter NKCC1. Blocking these cotransporters by bumetanide decreased both dorsal and ventral root discharges. We conclude that primary afferent fibers act as excitatory interneurons and that GABA, through PADs reaching firing threshold, is still playing a key role in promoting spontaneous activity in neonates.
Collapse
|
5
|
Viemari JC, Bos R, Boulenguez P, Brocard C, Brocard F, Bras H, Coulon P, Liabeuf S, Pearlstein E, Sadlaoud K, Stil A, Tazerart S, Vinay L. Chapter 1--importance of chloride homeostasis in the operation of rhythmic motor networks. PROGRESS IN BRAIN RESEARCH 2011; 188:3-14. [PMID: 21333799 DOI: 10.1016/b978-0-444-53825-3.00006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
GABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. The postsynaptic action depends on the intracellular concentration of chloride ions ([Cl(-)](i)), which is regulated by proteins in the plasma membrane: the K(+)-Cl(-) cotransporter KCC2 and the Na(+)-K(+)-Cl(-) cotransporter NKCC1, which extrude and intrude Cl(-) ions, respectively. A high [Cl(-)](i) leads to a depolarizing (excitatory) action of GABA and glycine, as observed in mature dorsal root ganglion neurons and in motoneurons both early during development and in several pathological conditions, such as following spinal cord injury. Here, we review some recent data regarding chloride homeostasis in the spinal cord and its contribution to network operation involved in locomotion.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR6196), Centre National de la Recherche Scientifique CNRS) & Aix-Marseille Université, 31 Chemin Joseph Aiguier, Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bautista W, Aguilar J, Loeza-Alcocer JE, Delgado-Lezama R. Pre- and postsynaptic modulation of monosynaptic reflex by GABAA receptors on turtle spinal cord. J Physiol 2010; 588:2621-31. [PMID: 20519320 DOI: 10.1113/jphysiol.2010.188979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is growing evidence that activation of high affinity extrasynaptic GABA(A) receptors in the brain, cerebellum and spinal cord substantia gelatinosa results in a tonic inhibition controlling postsynaptic excitability. The aim of the present study was to determine if GABA(A) receptors mediating tonic inhibition participate in the modulation of monosynaptic reflex (MSR) in the vertebrate spinal cord. Using an in vitro turtle lumbar spinal cord preparation, we show that conditioning stimulation of a dorsal root depressed the test monosynaptic reflex (MSR) at long condition-test intervals. This long duration inhibition is similar to the one seen in mammalian spinal cord and it is dependent on GABA(A) as it was completely blocked by 20 microm picrotoxin (PTX) or bicuculline (BIC) or 1 microm gabazine, simultaneously depressing the dorsal root potential (DRP) without MSR facilitation. Interestingly 100 microm picrotoxin or BIC potentiated the MSR, depressed the DRP, and produced a long lasting motoneurone after-discharge. Furosemide, a selective antagonist of extrasynaptic GABA(A) receptors, affects receptor subtypes with alpha(4/6) subunits, and in a similar way to higher concentrations of PTX or BIC, also potentiated the MSR but did not affect the DRP, suggesting the presence of alpha(4/6) GABA(A) receptors at motoneurones. Our results suggest that (1) the turtle spinal cord has a GABA(A) mediated long duration inhibition similar to presynaptic inhibition observed in mammals, (2) GABA(A) receptors located at the motoneurones and primary afferents might produce tonic inhibition of monosynaptic reflex, and (3) GABA(A) receptors modulate motoneurone excitability reducing the probability of spurious and inappropriate activation.
Collapse
Affiliation(s)
- Wendy Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Avenida IPN no. 2508, Colonia Zacatenco, México D.F., CP 07300, México
| | | | | | | |
Collapse
|
7
|
Le Ray D, Combes D, Déjean C, Cattaert D. In Vivo Analysis of Proprioceptive Coding and Its Antidromic Modulation in the Freely Behaving Crayfish. J Neurophysiol 2005; 94:1013-27. [PMID: 15829591 DOI: 10.1152/jn.01255.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although sensory nerves in vitro are known to convey both orthodromic (sensory) and antidromic (putatively modulating) action potentials, in most cases very little is known about their bidirectional characteristics in intact animals. Here, we have investigated both the sensory coding properties and antidromic discharges that occur during real walking in the freely behaving crayfish. The activity of the sensory nerve innervating the proprioceptor CBCO, a chordotonal organ that monitors both angular movement and position of the coxo-basipodite (CB) joint, which is implicated in vertical leg movements, was recorded chronically along with the electromyographic activity of the muscles that control CB joint movements. Two wire electrodes placed on the sensory nerve were used to discriminate orthodromic from antidromic action potentials and thus allowed for analysis of both sensory coding and antidromic discharges. A distinction is proposed between 3 main classes of sensory neuron, according to their firing in relation to levator muscle activity during free walking. In parallel, we describe 2 types of antidromic activity: one produced exclusively during motor activity and a second produced both during and in the absence of motor activity. A negative correlation was found between the activity of sensory neurons in each of the 3 classes and identified antidromic discharges during walking. Finally, a state-dependent plasticity of CBCO nerve activity has been found by which the distribution of sensory orthodromic and antidromic activity changes with the physiological state of the biomechanical apparatus.
Collapse
Affiliation(s)
- Didier Le Ray
- Laboratoire de Neurobiologie des Réseaux, Centre National de la Recherche Scientifique-Unité Mixte de Recherche, Université Bordeaux 1, Talence, France
| | | | | | | |
Collapse
|
8
|
Arvanian VL, Motin V, Mendell LM. Comparison of metabotropic glutamate receptor responses at segmental and descending inputs to motoneurons in neonatal rat spinal cord. J Pharmacol Exp Ther 2005; 312:669-77. [PMID: 15383635 DOI: 10.1124/jpet.104.075077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the contribution of metabotropic glutamate receptors (mGluRs) to the generation and modulation of synaptic responses elicited in intracellularly recorded L5 motoneurons from neonatal rats by segmental and descending fibers. Dorsal root (DR) stimulation at high intensity (C-fiber strength) evoked long latency (2-5-s) depolarization in addition to early monosynaptic and polysynaptic responses. Stimulation of the descending ventrolateral funiculus (VLF) failed to evoke a late response in the same motoneuron. The mGluR antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 0.4 mM) selectively blocked the long latency DR response. This mGluR-mediated response persisted in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate or N-methyl-d-aspartate (NMDA) antagonists, but not both, suggesting that glutamate transmission (either AMPA/kainate or NMDA) is required for mGluR-mediated inputs from small diameter sensory afferents to affect the motoneuron. Although MCPG inhibited the long latency DR response, it induced moderate facilitation of monosynaptic DR and VLF responses. The mGluR agonist 1s3r-ACPD induced motoneuron depolarization and depressed the monosynaptic DR and VLF responses. MCPG also facilitated the neurotrophin-3 and brain-derived neurotrophic factor induced strengthening of the monosynaptic DR responses (but only before P6, since neurotrophins are ineffective later at DR synapses and never at VLF synapses after birth). Our results suggest that mGluRs are involved in synaptic pathways to motoneurons made by DR but not VLF fibers. MCPG-induced facilitation of monosynaptic AMPA/kainate DR and VLF responses suggests the possibility of tonic mGluR-mediated inhibition of DR and VLF responses. We speculate that MCPG facilitates neurotrophin-induced strengthening of monosynaptic DR responses by reducing this tonic inhibition.
Collapse
Affiliation(s)
- Victor L Arvanian
- Department of Neurobiology and Behavior, Life Sciences Bldg., Rm 550, SUNY-Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | |
Collapse
|
9
|
Maile R, Walker RJ, Sharma RP, Bagust J. Effects of nociceptin and analogues of nociceptin upon spontaneous dorsal root activity recorded from an in vitro preparation of rat spinal cord. Neurosci Lett 2003; 350:190-2. [PMID: 14550927 DOI: 10.1016/s0304-3940(03)00910-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 17 amino acid peptide nociceptin has been implicated in pain modulation in the central nervous system. The effects of bath applied nociceptin, and some analogues of nociceptin, upon spontaneous lumbar dorsal root activity have been investigated in an isolated preparation of rat spinal cord. Nociceptin was found to reversibly depress spontaneous dorsal root activity at concentrations of 1.0 microM and 10.0 microM (IC50 2.0 microM), whereas acetyl-nociceptin at concentrations up to 10 microM had no detectable effect. Omission of the last four amino acids (nociceptin 1-13), increased the potency of the effect upon dorsal root activity by approximately 100-fold (IC50 30 nM), but activity was lost when only the first seven amino acids of the nociceptin molecule (nociceptin 1-7) were tested.
Collapse
Affiliation(s)
- Rebecca Maile
- Cell Sciences Division, School of Biological Sciences, Bassett Crescent East, Southampton University, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|
10
|
Abstract
Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural networks. In this study, we analyzed the effect of antidromic discharges on the sensory activity of a leg proprioceptor in in vitro preparations of the crayfish CNS. Intracellular microelectrodes were used both to record the orthodromic spikes and to elicit antidromic spikes by injecting squares pulses of depolarizing current at various frequencies. Experiments were performed on the three types of identified sensory afferents (tonic, phasotonic, and phasic). The main results showed a reduction of the firing frequency of the orthodromic activity in 82% of the tested afferents. In tonic afferents, during their occurrences and according to their frequency, antidromic spikes or bursts reduced or suppressed the orthodromic activity. Following their terminations, they also induced a silent period and a gradual recovery of the orthodromic activity, both of which increased as the duration and the frequency of the antidromic bursts increased. In phasotonic and phasic afferents, antidromic bursts reduced or suppressed the phasic responses as their frequency and durations increased. In phasotonic afferents, if elicited prior to the movements, long-duration bursts with increasing frequency reduced more rapidly the tonic background activity than the phasic one whereas short-duration bursts at high frequency produced strong decreases of both. The effect of antidromic bursts accumulated when they are repetitively elicited. Antidromic bursts induced a much larger decrease of the sensory activity than adaptation alone. The occurrences of antidromic spikes or bursts may have a functional role in modulating the incoming sensory messages during locomotion. The mechanisms by which antidromic spikes modulate the firing sensitivity of the primary afferents may well lie in modifications of the properties of either mecanotransduction and/or spike initiation.
Collapse
Affiliation(s)
- Daniel Cattaert
- Laboratoire Neurobiologie des Réseaux, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5816, Université Bordeaux I, Biologie Animale, 33405 Talence Cedex, France.
| | | |
Collapse
|
11
|
Abstract
In the immature brain, GABA (gamma-aminobutyric acid) is excitatory, and GABA-releasing synapses are formed before glutamatergic contacts in a wide range of species and structures. GABA becomes inhibitory by the delayed expression of a chloride exporter, leading to a negative shift in the reversal potential for choride ions. I propose that this mechanism provides a solution to the problem of how to excite developing neurons to promote growth and synapse formation while avoiding the potentially toxic effects of a mismatch between GABA-mediated inhibition and glutamatergic excitation. As key elements of this cascade are activity dependent, the formation of inhibition adds an element of nurture to the construction of cortical networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM Unit 29, Parc Scientifique de Luminy, 13273 Marseille Cedex 09, France.
| |
Collapse
|
12
|
Pflieger JF, Clarac F, Vinay L. Picrotoxin and bicuculline have different effects on lumbar spinal networks and motoneurons in the neonatal rat. Brain Res 2002; 935:81-6. [PMID: 12062476 DOI: 10.1016/s0006-8993(02)02469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicuculline is the most commonly used GABA(A) receptor antagonist to investigate the contribution of these receptors in motor control. However, this compound has been shown recently to potentiate the burst firing of neurons in various brain regions by blocking a calcium-activated potassium current underlying the spike after-hyperpolarization (AHP). This effect may distort our understanding of the role of GABA(A) receptors at the network level. In vitro brainstem-spinal cord preparations isolated from neonatal rats were used to compare the effects of bicuculline methiodide (bicuculline-M) and picrotoxin (PTX), another GABA(A) receptor antagonist, on the AHP of lumbar motoneurons as well as on spontaneous and locomotor-like motor activities. Intracellular recordings of lumbar motoneurons showed that bicuculline-M (20 microM) reduced the AHP to 57% of control whereas PTX (20-60 microM) had no significant effect. Bath-application of increasing concentrations of PTX caused an increase in spontaneous ventral root activity, which further increased significantly when bicuculline-M was added. The effects of both antagonists were tested on fictive locomotion. The left-right alternation was disrupted in the presence of bicuculline-M. A slow synchronous bursting activity of large amplitude also appeared in the presence of PTX. This slow rhythm was superimposed on a faster rhythm which still exhibited some degree of left-right alternation. These data demonstrate that bicuculline-M may not reveal accurately the contribution of GABA(A) receptors in motor control and the intrinsic properties of disinhibited networks.
Collapse
|
13
|
Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F. Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 2000; 53:635-47. [PMID: 11165799 DOI: 10.1016/s0361-9230(00)00397-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rat is quite immature at birth and a rapid maturation of motor behavior takes place during the first 2 postnatal weeks. Lumbar motoneurons undergo a rapid development during this period. The last week before birth represents the initial stages of motoneuron differentiation, including regulation of the number of cells and the arrival of segmental and first supraspinal afferents. At birth, motoneurons are electrically coupled and receive both appropriate and inappropriate connections from the periphery; the control from supraspinal structures is weak and exerted mainly through polysynaptic connections. During the 1st postnatal week, inappropriate sensori-motor contacts and electrical coupling disappear, the supraspinal control increases gradually and myelin formation is responsible for an increased conduction velocity in both descending and motor axons. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors are transiently overexpressed in the neonatal spinal cord. The contribution of non-NMDA receptors to excitatory amino acid transmission increases with age. Activation of gamma-aminobutyric acid(A) and glycine receptors leads to membrane depolarization in embryonic motoneurons but to hyperpolarization in older motoneurons. The firing properties of motoneurons change with development: they are capable of more repetitive firing at the end of the 1st postnatal week than before birth. However, maturation does not proceed simultaneously in the motor pools innervating antagonistic muscles; for instance, the development of repetitive firing of ankle extensor motoneurons lags behind that of flexor motoneurons. The spontaneous embryonic and neonatal network-driven activity, detected at the levels of motoneurons and primary afferent terminals, may play a role in neuronal maturation and in the formation and refinement of sensorimotor connections.
Collapse
Affiliation(s)
- L Vinay
- CNRS, Développement et Pathologie du Mouvement, Marseille, France.
| | | | | | | | | |
Collapse
|
14
|
Fellippa-Marques S, Vinay L, Clarac F. Spontaneous and locomotor-related GABAergic input onto primary afferents in the neonatal rat. Eur J Neurosci 2000; 12:155-64. [PMID: 10651870 DOI: 10.1046/j.1460-9568.2000.00895.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in vitro brain stem-spinal cord preparation of neonatal rats (0-5 days old) was used to examine the contribution of GABAA (gamma-aminobutyric acid) receptors to the spontaneous and locomotor-related antidromic firing in the dorsal roots of neonatal rats. Spontaneous bursts of antidromic discharges were generated by the underlying afferent terminal depolarizations reaching spiking threshold. The number of antidromic action potentials increased significantly in saline solution with Cl- concentration reduced to 50% of control. Bath application of the GABAA receptor antagonist bicuculline, at low concentrations (1-2 microM), or picrotoxin blocked the antidromic discharges in the dorsal roots almost completely. The increase in Cl- conductance was therefore mediated by an activation of GABAA receptors. Increasing the concentration of bicuculline to 10-20 microM never blocked these discharges further. On the contrary, in half of the preparations, the number of antidromic action potentials was higher in the presence of high concentrations of bicuculline (10-20 microM) than in the presence of picrotoxin or low concentrations of bicuculline. This suggests that bicuculline, at high concentrations, may have other effects, in addition to blocking GABAA receptors. Dorsal root firing was observed during fictive locomotion induced by bath application of excitatory amino acids and serotonin. A rhythmical pattern was often demonstrated. Bicuculline at low concentrations caused a decrease of the antidromic discharge whereas, at high concentrations, bursts of discharges appeared. A double-bath with a barrier built at the L3 level was then used to separate the mechanisms which generate locomotion from those mediating primary afferent depolarizations. Excitatory amino acids and serotonin were perfused in the rostral pool only. Decreasing the concentration of chloride in the caudal bath caused a sharp increase in the number of antidromic action potentials recorded from the L5 dorsal root. These discharges, which were modulated in phase with the locomotor rhythm, were blocked by bicuculline. These data demonstrate the existence of a locomotor-related GABAergic input onto primary afferent terminals in the neonatal rat.
Collapse
Affiliation(s)
- S Fellippa-Marques
- CNRS, UPR Neurobiologie et Mouvements (UPR 9011), 31 chemin Joseph Aiguier, 13402 Marseille Cx 20, France
| | | | | |
Collapse
|
15
|
Vinay L, Brocard F, Fellippa-Marques S, Clarac F. Antidromic discharges of dorsal root afferents in the neonatal rat. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:359-67. [PMID: 10574124 DOI: 10.1016/s0928-4257(00)80063-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.
Collapse
Affiliation(s)
- L Vinay
- CNRS, UPR Neurobiologie et Mouvements (UPR 9011), Marseille, France
| | | | | | | |
Collapse
|
16
|
Brocard F, Vinay L, Clarac F. Gradual development of the ventral funiculus input to lumbar motoneurons in the neonatal rat. Neuroscience 1999; 90:1543-54. [PMID: 10338319 DOI: 10.1016/s0306-4522(98)00550-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The in vitro brainstem-spinal cord preparation of newborn rats (0 to six-days-old) was used to investigate the development of pathways descending ventrally from the brainstem, which are important for the control of posture and locomotion. The ventral funiculus of the spinal cord was stimulated at the cervical (C1) level. Responses were recorded at the lumbar level from either motoneurons or ventral roots using intracellular microelectrodes or suction electrodes, respectively. Responses consisted of a pure excitation lasting 15 ms, followed by mixed excitatory/inhibitory responses. The inhibition was, at least partly, mediated by glycine. Excitatory amino acid transmission appears to be responsible for the excitation. The characteristics of the ventral funiculus-evoked postsynaptic potentials and ventral root potentials changed significantly with age. Their latency decreased whereas the slope and the area, measured over the first 15 ms, increased. The increase of the ventral funiculus input to motoneurons was slightly more pronounced than that of the monosynaptic dorsal root-evoked potentials from day 0 to day 4. These data suggest a gradual arrival of ventral descending axons in the lumbar enlargement which may be responsible for the gradual acquisition of postural control that takes place during the first days after birth. This is a prerequisite for the development of the adult pattern of quadrupedal locomotion, with elevated trunk.
Collapse
Affiliation(s)
- F Brocard
- CNRS, UPR Neurobiologie et Mouvements (UPR 9011), Marseille, France
| | | | | |
Collapse
|
17
|
Clarac F, Vinay L, Cazalets JR, Fady JC, Jamon M. Role of gravity in the development of posture and locomotion in the neonatal rat. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:35-43. [PMID: 9795120 DOI: 10.1016/s0165-0173(98)00024-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This report describes the early motor behaviour in the neonatal rat in relation with the maturation of sensory and motor elements of the central nervous system (CNS). The role of vestibular information during the week before (E14-21) and the 2 weeks after (P0-15) birth will be considered. There is a rostro-caudal gradient in the maturation of posture and locomotion with a control of the head and forelimbs during the first postnatal week and then a sudden acceleration in the functional maturation of the hindlimb. At birth, the neonatal rat is blinded and deaf; despite the immaturity of the other sensory systems, the animal uses its olfactory system to find the mother nipple. Vestibular development takes place between E8 and P15. Most descending pathways from the brainstem start to reach the lumbar enlargement of the spinal cord a few days before birth (reticulo-, vestibulospinal pathways as well as the serotonergic and noradrenergic projections); their development is not completed until the end of the second postnatal week. At birth, in an in vitro preparation, a locomotor activity can be evoked by perfusing excitatory amino acids and serotonin over the lumbar region. The descending pathways which trigger the activity of the CPG are also partly functional. At the same age both air stepping and swimming can be induced. Complex locomotion such as walking, trotting and galloping start later because it requires the maturation of the vestibular system, descending pathways and postural reflex regulation. The period around birth is critical to properly define how the vestibular information is essential for the structuring of the motor behaviour. Different types of experiments (hypergravity, microgravity) are planned to test this hypothesis.
Collapse
Affiliation(s)
- F Clarac
- CNRS (UPR 9011), Neurobiologie et Mouvements, 31 chemin Joseph Aiguier, BP 71, F-13402, Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|