1
|
Wei J, Deng J, Chao M. A feasibility study of lung tumor segmentation on kilo-voltage radiographic images with transfer learning: Toward tumor motion tracking in radiotherapy. Phys Med 2025; 132:104943. [PMID: 40023957 DOI: 10.1016/j.ejmp.2025.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE To segment the lung tumor on kilo-voltage X-ray radiographic images acquired during treatment toward the markerless lung tumor tracking. METHODS Per IRB approval, 1150 radiographic images from 80 lung cancer patients were included in the study. We developed a transfer learning deep segmentation net jury committee (TL-DSN-JC) algorithm to segment lung tumors on these images. The proposed models were initialized with the pre-trained VGG-16/19 networks with all but the weights of the connections between the final two layers frozen. A randomized partitioning was applied to train the deep segmentation net. By independently training 12 different deep segmentation nets (DSNs) to form a jury committee (JC), we could determine whether a pixel belonged to the tumor target. Meta-AI Segment Anything Model (SAM) was also tuned to cross-check with our proposed approach. RESULTS The results predicted by the TL-DSN-JC algorithm were evaluated using precision, recall, F1 score that is equivalent to the Dice score, and Hausdorff distance (HD). The TL-DSN-JC algorithm outperformed other similar algorithms such as the singular-DSN-without-transfer-learning, the DSN jury committee without transfer learning, and the singular-DSN-with-transfer-learning by up to 80%. Compared to the SAM-based model, the proposed model was superior in terms of HD although similar performance was observed based on the F1/Dice score. The results demonstrated that TL-DSN-JC could segment the tumor with clinically acceptable accuracy. CONCLUSIONS The experimental results demonstrated that the proposed algorithm outperformed the conventional deep learning techniques, offering a potential tool for markerless tumor motion tracking on projection images.
Collapse
Affiliation(s)
- Jie Wei
- Department of Computer Science, City College of New York, New York, NY 10031, USA.
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Ming Chao
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Reidel CA, Pierobon E, Horst F, Gesson L, Paz A, Graeff C, Steinsberger T, Zink K, Witt M, Senger Y, Finck C, Vanstalle M, La Tessa C, Durante M, Weber U, Schuy C. Feasibility study of 4D-online monitoring of density gradients induced by lung cancer treatment using carbon ions. Front Oncol 2025; 15:1502960. [PMID: 40078180 PMCID: PMC11896988 DOI: 10.3389/fonc.2025.1502960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor motion is a major challenge for scanned ion-beam therapy. In the case of lung tumors, strong under- and overdosage can be induced due to the high density gradients between the tumor- and bone tissues compared to lung tissues. This work proposes a non-invasive concept for 4D monitoring of high density gradients in carbon ion beam therapy, by detecting charged fragments. The method implements CMOS particle trackers that are used to reconstruct the fragment vertices, which define the emission points of nuclear interactions between the primary carbon ions and the patient tissues. A 3D treatment plan was optimized to deliver 2 Gy to a static spherical target volume. The goodness of the method was assessed by comparing reconstructed vertices measured in two static cases to the ones in a non-compensated moving case with an amplitude of 20 mm. The measurements, performed at the Marburg Ion-Beam Therapy Center (MIT), showed promising results to assess the conformity of the delivered dose. In particular to measure overshoots induced by high density gradients due to motion with 83.0 ± 1.5% and 92.0 ± 1.5% reliability based on the ground truth provided by the time-resolved motor position and depending on the considered volume and the iso-energy layers.
Collapse
Affiliation(s)
- Claire-Anne Reidel
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Enrico Pierobon
- UNITN-TIFPA, University of Trento, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Felix Horst
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Lévana Gesson
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Université de Strasbourg, CNRS, IPHC UMR 7871, Strasbourg, France
| | - Athena Paz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institute of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Timo Steinsberger
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Giessen, Germany
- Marburg Ion-Beam Therapy Center MIT, Marburg, Germany
| | - Matthias Witt
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Giessen, Germany
- Marburg Ion-Beam Therapy Center MIT, Marburg, Germany
| | | | - Christian Finck
- Université de Strasbourg, CNRS, IPHC UMR 7871, Strasbourg, France
| | - Marie Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7871, Strasbourg, France
| | - Chiara La Tessa
- UNITN-TIFPA, University of Trento, Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Radiation Oncology Department, University of Miami, Miami, FL, United States
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, Naples, Italy
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, Giessen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
3
|
Toohey K, Mizrahi D, Hart NH, Singh B, Lopez P, Hunter M, Newton RU, Schmitz KH, Adams D, Edbrooke L, Hayes S. Exercise in cancer care for people with lung cancer: A narrative synthesis. J Sci Med Sport 2025; 28:16-25. [PMID: 39155211 DOI: 10.1016/j.jsams.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/24/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Lung cancer is the second most common cancer diagnosed worldwide, resulting in significant physical and psychological consequences. In this narrative review, we explore the role of exercise as an adjunct therapy to counteract health issues experienced by people before, during and after treatment for lung cancer, and offer recommendations for exercise prescription and future research. DESIGN Narrative cornerstone review. METHODS A narrative review was conducted to explore the role of exercise in cancer care for people diagnosed with lung cancer. RESULTS Improvements in fitness, strength and quality of life have been demonstrated in people with lung cancer following participation in exercise programmes before, during and post treatment. Whilst combined aerobic (50-100 % heart rate maximum) and resistance (50-85 % of 1 repetition maximum) training, 2-5 times per week across the cancer continuum is typically prescribed, few people with lung cancer currently access exercise services. 'Optimal' exercise prescription is unclear, although is likely individual-specific. The immediate priority is to identify a tolerable starting exercise dosage, with the side effects of lung cancer and its treatment on the respiratory system, particularly shortness of breath (dyspnoea), likely driving the initial maximum threshold for session mode, duration and intensity. To date, exercise safety for people with lung cancer has been poorly evaluated and reported - few trials report it, but those that do report small numbers of serious adverse events. CONCLUSIONS Recommendations for health professionals prescribing exercise therapy to people with lung cancer are provided, with consideration of the strengths and limitations of the current evidence base.
Collapse
Affiliation(s)
- Kellie Toohey
- Physical Activity, Sport, and Exercise Research Theme, Faculty of Health, Southern Cross University, Australia; Faculty of Health, University of Canberra, Australia.
| | - David Mizrahi
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Australia; Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Nicolas H Hart
- Human Performance Research Centre, INSIGHT Research Institute, University of Technology Sydney (UTS), Australia; Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia; Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Australia; Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Australia; Institute for Health Research, The University of Notre Dame Australia, Australia
| | - Ben Singh
- Allied Health & Human Performance, University of South Australia, Australia
| | - Pedro Lopez
- Grupo de Pesquisa em Exercício para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Brazil; Pleural Medicine Unit, Institute for Respiratory Health, Australia; Medical School, Faculty of Health & Medical Sciences, University of Western Australia, Australia
| | | | - Robert U Newton
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia
| | - Kathryn H Schmitz
- Division of Hematology and Oncology, Hillman Cancer Center, University of Pittsburgh, USA
| | - Diana Adams
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Australia
| | - Lara Edbrooke
- Department of Physiotherapy, The University of Melbourne, Australia; Department of Health Services Research, The Peter MacCallum Cancer Centre, Australia
| | - Sandi Hayes
- Menzies Health Institute Queensland, Griffith University, Australia; Viertel Cancer Research Centre, Cancer Council Queensland, Australia
| |
Collapse
|
4
|
Deng Y, Qiu M, Wu S, Zhong J, Huang J, Luo N, Lu Y, Bao Y. A feasibility study of tumor motion monitoring for SBRT of lung cancer based on 3D point cloud detection and stacking ensemble learning. J Med Imaging Radiat Sci 2024; 55:101729. [PMID: 39128321 DOI: 10.1016/j.jmir.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE To construct a tumor motion monitoring model for stereotactic body radiation therapy (SBRT) of lung cancer from a feasibility perspective. METHODS A total of 32 treatment plans for 22 patients were collected, whose planning CT and the centroid position of the planning target volume (PTV) were used as the reference. Images of different respiratory phases in 4DCT were acquired to redefine the targets and obtain the floating PTV centroid positions. In accordance with the planning CT and CBCT registration parameters, data augmentation was accomplished, yielding 2130 experimental recordings for analysis. We employed a stacking multi-learning ensemble approach to fit the 3D point cloud variations of body surface and the change of target position to construct the tumor motion monitoring model, and the prediction accuracy was assess using root mean squared error (RMSE) and R-Square (R2). RESULTS The prediction displacement of the stacking ensemble model shows a high degree of agreement with the reference value in each direction. In the first layer of model, the X direction (RMSE =0.019 ∼ 0.145mm, R2 =0.9793∼0.9996) and the Z direction (RMSE = 0.051 ∼ 0.168 mm, R2 = 0.9736∼0.9976) show the best results, while the Y direction ranked behind (RMSE = 0.088 ∼ 0.224 mm, R2 = 0.9553∼ 0.9933). The second layer model summarizes the advantages of unit models of first layer, and RMSE of 0.015 mm, 0.083 mm, 0.041 mm, and R2 of 0.9998, 0.9931, 0.9984 respectively for X, Y, Z were obtained. CONCLUSIONS The tumor motion monitoring method for SBRT of lung cancer has potential application of non-ionization, non-invasive, markerless, and real-time.
Collapse
Affiliation(s)
- Yongjin Deng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Minmin Qiu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Shuyu Wu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jiajian Zhong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiexing Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ning Luo
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yong Bao
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
5
|
Park JB, Lee JH, Chang JH, Son J, Kwon S, Choi SY, Shin HW, Yu T, Kim HJ. Optimizing target and diaphragmatic configuration, and dosimetric benefits using continuous positive airway pressure in stereotactic ablative radiotherapy for lung tumors. Radiat Oncol J 2024; 42:200-209. [PMID: 39354823 PMCID: PMC11467486 DOI: 10.3857/roj.2024.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE This study aimed to evaluate the impact of facilitating target delineation of continuous positive airway pressure (CPAP) in patients undergoing stereotactic ablative radiation therapy (SABR) for lung tumors by lung expansion and respiratory motion management. MATERIALS AND METHODS We performed a prospective single-institutional trial of patients who were diagnosed with either primary lung cancer or lung metastases and received SABR with a dose of 40 to 60 Gy in 4 fractions. Four-dimensional computed tomography simulations were conducted for each patient: once without CPAP and again with CPAP. RESULTS Thirty-two patients with 39 tumors were analyzed, after the withdrawal of five patients due to discomfort. For 26 tumors separated from the diaphragm, CPAP significantly increased the superoinferior distance between the tumor and the diaphragm (5.96 cm vs. 8.06 cm; p < 0.001). For 13 tumors located adjacent to the diaphragm, CPAP decreased the overlap of planning target volume (PTV) with the diaphragm significantly (6.32 cm3 vs. 4.09 cm3; p = 0.002). PTV showed a significant reduction with CPAP (25.06 cm3 vs. 22.52 cm3, p = 0.017). In dosimetric analyses, CPAP expanded lung volume by 58.4% with a significant reduction in mean dose and V5 to V40. No more than grade 2 adverse events were reported. CONCLUSION This trial demonstrated significant improvement of CPAP in target delineation uncertainties for lung SABR, with dosimetric benefits, a favorable safety profile and tolerability. Further investigation is warranted to explore the role of CPAP as a novel strategy for respiratory motion management.
Collapse
Affiliation(s)
- Jung Bin Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seho Kwon
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Yun Choi
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Woo Shin
- Obstructive Upper Airway Research Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Meng YJ, Mankuzhy NP, Chawla M, Lee RP, Yorke ED, Zhang Z, Gelb E, Lim SB, Cuaron JJ, Wu AJ, Simone CB, Gelblum DY, Lovelock DM, Harris W, Rimner A. A Prospective Study on Deep Inspiration Breath Hold Thoracic Radiation Therapy Guided by Bronchoscopically Implanted Electromagnetic Transponders. Cancers (Basel) 2024; 16:1534. [PMID: 38672616 PMCID: PMC11048337 DOI: 10.3390/cancers16081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.
Collapse
Affiliation(s)
- Yuzhong Jeff Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Nikhil P. Mankuzhy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Robert P. Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- New York Proton Center, New York, NY 10035, USA; (C.B.S.II)
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- Department of Radiation Oncology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Gough E, Ashworth S, Moodie T, Wang W, Byth K, Beldham-Collins R, Buck J, Ghattas S, Burke L, Stuart KE. DIBH reduces right coronary artery and lung radiation dose in right breast cancer loco-regional radiotherapy. Med Dosim 2024; 49:307-313. [PMID: 38584019 DOI: 10.1016/j.meddos.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
To determine whether deep inspiratory breath-hold (DIBH) reduces dose to organs-at-risk (OAR), in particular the right coronary artery (RCA), in women with breast cancer requiring right-sided post-mastectomy radiotherapy (PMRT) including internal mammary chain (+IMC) radiotherapy (RT). Fourteen consecutive women requiring right-sided PMRT + IMC were retrospectively identified. Nodal delineation was in accordance with European Society for Radiology and Oncology (ESTRO) guidelines and tangential chest wall fields marked. Patients were planned with Anisotropic Analytical Algorithm using free-breathing (FB) and DIBH datasets. Dose was calculated using Acuros External Beam algorithm. FB and DIBH dose comparisons were analyzed for heart, RCA and right lung, as were chest wall and IMC planning target volumes (PTVs). DIBH vs FB resulted in median decreases of: the RCA mean dose by 0.6Gray (Gy) (interquartile range (IQR) 0.1, 1.9) (p = 0.002), RCA max dose by 1.8Gy (IQR 0.8, 6.1) (p = 0.002), and V5Gy by 2.9% (IQR 0.0, 37.2) (p = 0.016). RCA data indicated no statistically significant dosimetric reduction ≥10Gy. A median reduction of 1.7Gy (c -0.0, 7.1) (p = 0.019) in maximum heart dose was recorded with DIBH vs FB; no significant difference was observed in other heart and left anterior descending coronary artery parameters. The median reduction in right lung mean dose was 2.8Gy for DIBH vs FB plans (IQR 1.6, 3.6) (p = 0.001); significant median reductions of V5Gy, V20Gy, and V30Gy were all achieved with DIBH. Chest wall PTV coverage did not significantly differ between DIBH and FB plans; IMC dosimetric coverage improved with use of DIBH (V47.5Gy, V45Gy, V42Gy). DIBH reduced OAR dose in right-sided PMRT + IMC patients. A novel finding was that DIBH decreased RCA dose. Heart and right lung dose were also decreased with DIBH, whilst optimally dosed PTVs were maintained.
Collapse
Affiliation(s)
- Ebony Gough
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Department of Radiation Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Simon Ashworth
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Department of Radiation Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Trevor Moodie
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Department of Radiation Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Wei Wang
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Sydney Medical School, C24-Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia; Westmead Breast Cancer Institute, Westmead Hospital, Sydney, New South Wales, Australia
| | - Karen Byth
- NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW 2050, Australia; Research and Education Network, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Rachael Beldham-Collins
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Department of Radiation Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown, NSW 2148, Australia
| | - Jacqueline Buck
- Clinical Trials, Nepean and Blue Mountains Cancer Care Centre, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Samer Ghattas
- Department of Medical Radiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Lucinda Burke
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Kirsty E Stuart
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW 2145, Australia; Sydney Medical School, C24-Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia; Westmead Breast Cancer Institute, Westmead Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Huang L, Kurz C, Freislederer P, Manapov F, Corradini S, Niyazi M, Belka C, Landry G, Riboldi M. Simultaneous object detection and segmentation for patient-specific markerless lung tumor tracking in simulated radiographs with deep learning. Med Phys 2024; 51:1957-1973. [PMID: 37683107 DOI: 10.1002/mp.16705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. PURPOSE The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. METHODS We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. RESULTS A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p < 0.001) over the 37 PCT-DRR IoU > 0.2 cases, but not over the undifferentiated 84 testing cases. CONCLUSIONS The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases.
Collapse
Affiliation(s)
- Lili Huang
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, München, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Freislederer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marco Riboldi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
9
|
Mader T, Pace R, Boucas da Silva RT, Erwin Johannes Adam L, Näf G, Charles Winter C, Maria Aspradakis M, Radovic M, Spyridonidis A, Hayoz S, Gertrud Baumert B. Deep inspirational breast hold (DIBH) for right breast irradiation: Improved sparing of liver and lung tissue. Clin Transl Radiat Oncol 2024; 45:100731. [PMID: 38304241 PMCID: PMC10832365 DOI: 10.1016/j.ctro.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Objective To reduce liver and lung dose during right breast irradiation while maintaining optimal dose to the target volume. This dose reduction has the potential to decrease acute side effects and long-term toxicity. Materials and Methods 16 patients treated with radiation therapy for localized carcinoma of the right breast were included retrospectively. For the planning CT, each patient was immobilised on an indexed board with the arms placed above the head. CT scans were acquired in free-breathing (FB) as well as with deep inspiration breath hold (DIBH). Both scans were acquired with the same length. Planning target volumes (PTV's) were created with a 5 mm margin from the respective clinical target volumes (CTV's) on both CT datasets. The liver was outlined as scanned. Dose metrics evaluated were as follows: differences in PTV coverage, dose to the liver (max, mean, V90%, V50%, V30%), dose to lung (mean, V20Gy, relative electron density) and dose to heart (Dmax). The p-values were calculated using Wilcoxon signed-rank tests. A p-value was significant when <0.05. Results Differences in PTV coverage between plans using FB and DIBH were less than 2 %. Maximum liver dose was significantly less using DIBH: 17.5 Gy versus FB: 40.3 Gy (p < 0.001). The volume of the liver receiving 10 % of the dose was significantly less using DIBH with 1.88 cm3 versus 72.2 cm3 under FB (p < 0.001). The absolute volume receiving 20 Gy in the right lung was larger using DIBH: 291 cm3 versus 230 cm3 under FB (p < 0.001) and the relative volume of lung receiving dose greater than 20 Gy was smaller with DIBH: 11.5 % versus 14 % in FB (p = 0.007). The relative electron density of lung was significantly less with DIBH: 0.59 versus 0.62 with FB, (p < 0.001). This suggests that the lung receives less dose due to its lower density when using DIBH. Conclusion Radiation of the right breast using DIBH spares liver and lung tissue significantly and thus carries the potential of best practice for right sided breast cancer.
Collapse
Affiliation(s)
- Thomas Mader
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Rachel Pace
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Rui T. Boucas da Silva
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
- Department of Radiation Oncology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | | | - Gabriela Näf
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | | | - Mania Maria Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
- Department of Radiation Oncology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Marco Radovic
- Department of Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Stefanie Hayoz
- Swiss Group for Clinical Cancer Research (SAKK), Competence Center, Bern, Switzerland
| | | |
Collapse
|
10
|
Nakanishi D, Oita M, Fukunaga JI, Hirose TA, Yoshitake T, Sasaki M. Investigation of uncertainty in internal target volume definition for lung stereotactic body radiotherapy. Radiol Phys Technol 2023; 16:497-505. [PMID: 37713060 PMCID: PMC10665452 DOI: 10.1007/s12194-023-00737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
This study evaluated the validity of internal target volumes (ITVs) defined by three- (3DCT) and four-dimensional computed tomography (4DCT), and subsequently compared them with actual movements during treatment. Five patients with upper lobe lung tumors were treated with stereotactic body radiotherapy (SBRT) at 48 Gy in four fractions. Planning 3DCT images were acquired with peak-exhale and peak-inhale breath-holds, and 4DCT images were acquired in the cine mode under free breathing. Cine images were acquired using an electronic portal imaging device during irradiation. Tumor coverage was evaluated based on the manner in which the peak-to-peak breathing amplitude on the planning CT covered the range of tumor motion (± 3 SD) during irradiation in the left-right, anteroposterior, and cranio-caudal (CC) directions. The mean tumor coverage of the 4DCT-based ITV was better than that of the 3DCT-based ITV in the CC direction. The internal margin should be considered when setting the irradiation field for 4DCT. The proposed 4DCT-based ITV can be used as an efficient approach in free-breathing SBRT for upper-lobe tumors of the lung because its coverage is superior to that of 3DCT.
Collapse
Affiliation(s)
- Daiki Nakanishi
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1, Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Masataka Oita
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan.
| | - Jun-Ichi Fukunaga
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1, Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Taka-Aki Hirose
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1, Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Motoharu Sasaki
- Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8503, Japan
| |
Collapse
|
11
|
Dong Y, Hu P, Li X, Liu W, Yan B, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of distinct gating strategies in cine MR image-guided breath-hold pancreatic cancer radiotherapy. J Appl Clin Med Phys 2023; 24:e14078. [PMID: 37335543 PMCID: PMC10562039 DOI: 10.1002/acm2.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To investigate the dosimetry effects of different gating strategies in cine magnetic resonance imaging (MRI)-guided breath-hold pancreatic cancer radiotherapy. METHODS Two cine MRI-based gating strategies were investigated: a tumor contour-based gating strategy at a gating threshold of 0-5% and a tumor displacement-based gating strategy at a gating threshold of 3-5 mm. The cine MRI videos were obtained from 17 pancreatic cancer patients who received MRI-guided radiation therapy. We calculated the tumor displacement in each cine MR frame that satisfied the gating threshold and obtained the proportion of frames with different displacements. We generated IMRT and VMAT plans using a 33 Gy prescription, and motion plans were generated by adding up all isocenter-shift plans corresponding to different tumor displacements. The dose parameters of GTV, PTV, and organs at risk (OAR) were compared between the original and motion plans. RESULTS In both gating strategies, the difference was significant in PTV coverage but not in GTV coverage between the original and motion plans. OAR dose parameters deteriorate with increasing gating threshold. The beam duty cycle increased from 19.5±14.3% (median 18.0%) to 60.8±15.6% (61.1%) for gating thresholds from 0% to 5% in tumor contour-based gating and from 51.7±11.5% (49.7%) to 67.3±12.4% (67.1%) for gating thresholds from 3 to 5 mm in tumor displacement-based gating. CONCLUSION In tumor contour-based gating strategy, the dose delivery accuracy deteriorates while the dose delivery efficiency improves with increasing gating thresholds. To ensure treatment efficiency, the gating threshold might be no less than 3%. A threshold up to 5% may be acceptable in terms of the GTV coverage. The displacement-based gating strategy may serve as a potential alternative to the tumor contour based gating strategy, in which the gating threshold of approximately 4 mm might be a good choice for reasonably balancing the dose delivery accuracy and efficiency.
Collapse
Affiliation(s)
- Yuyan Dong
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Panpan Hu
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaoyang Li
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Wei Liu
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Bing Yan
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Fei Yang
- The Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | | | | | - Yidong Yang
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
12
|
Håkansson K, Josipovic M, Ottosson W, Behrens CP, Vogelius IR, Persson G. Evaluating the dosimetric effect of intra-fractional variations in deep inspiration breath-hold radiotherapy - a proof-of-concept study. Acta Oncol 2023; 62:1246-1250. [PMID: 37738385 DOI: 10.1080/0284186x.2023.2259084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Affiliation(s)
- K Håkansson
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - M Josipovic
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - W Ottosson
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - C P Behrens
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - I R Vogelius
- Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - G Persson
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
13
|
Lebow ES, Lobaugh SM, Zhang Z, Dickson MA, Rosenbaum E, D'Angelo SP, Nacev BA, Shepherd AF, Shaverdian N, Wolden S, Wu AJ, Gelblum DY, Simone CB, Gomez DR, Alektiar K, Tap WD, Rimner A. Stereotactic body radiation therapy for sarcoma pulmonary metastases. Radiother Oncol 2023; 187:109824. [PMID: 37532104 PMCID: PMC11225867 DOI: 10.1016/j.radonc.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND/PURPOSE Stereotactic body radiation therapy (SBRT) is standard for patients with inoperable early-stage NSCLC. We hypothesized that SBRT for sarcoma pulmonary metastases would achieve high rates of local control with acceptable toxicity and that patients with oligometastatic disease may achieve prolonged survival following SBRT. MATERIALS/METHODS This retrospective review included consecutive patients at our institution treated with SBRT for sarcoma pulmonary metastases. Cumulative incidence of local failure (LF) was estimated using a competing risks framework. RESULTS We identified 66 patients treated to 95 pulmonary metastases with SBRT. The median follow-up from the time of SBRT was 36 months (95% CI 34 - 53 months). The cumulative incidence of LF at 12 and 24 months was 3.1% (95% CI 0.9 - 10.6%) and 7.4% (95% CI 4.0% - 13.9%), respectively. The 12- and 24-month overall survival was 74% (95% CI 64 - 86%) and 49% (38 - 63%), respectively. Oligometastatic disease, intrathoracic only disease, and performance status were associated with improved survival on univariable analysis. Three patients had grade 2 pneumonitis, and one patient had grade 2 esophagitis. No patients had ≥ grade 3+ toxicities. CONCLUSION To the best of our knowledge, this is the largest series of patients treated with SBRT for pulmonary sarcoma metastases. We observed that SBRT offers an effective alternative to surgical resection with excellent local control and low proportions of toxicity.
Collapse
Affiliation(s)
- Emily S Lebow
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Stephanie M Lobaugh
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Zhigang Zhang
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Annemarie F Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Suzanne Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kaled Alektiar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
14
|
Aznar MC, Carrasco de Fez P, Corradini S, Mast M, McNair H, Meattini I, Persson G, van Haaren P. ESTRO-ACROP guideline: Recommendations on implementation of breath-hold techniques in radiotherapy. Radiother Oncol 2023; 185:109734. [PMID: 37301263 DOI: 10.1016/j.radonc.2023.109734] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The use of breath-hold techniques in radiotherapy, such as deep-inspiration breath hold, is increasing although guidelines for clinical implementation are lacking. In these recommendations, we aim to provide an overview of available technical solutions and guidance for best practice in the implementation phase. We will discuss specific challenges in different tumour sites including factors such as staff training and patient coaching, accuracy, and reproducibility. In addition, we aim to highlight the need for further research in specific patient groups. This report also reviews considerations for equipment, staff training and patient coaching, as well as image guidance for breath-hold treatments. Dedicated sections for specific indications, namely breast cancer, thoracic and abdominal tumours are also included.
Collapse
Affiliation(s)
- Marianne Camille Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| | - Pablo Carrasco de Fez
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Mirjam Mast
- Department of Radiotherapy, Haaglanden Medical Center, Leidschendam, The Netherlands
| | - Helen McNair
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, UK
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Gitte Persson
- Department of Oncology, Herlev-Gentofte Hospital, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark
| | - Paul van Haaren
- Department of Radiotherapy, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Yoganathan SA, Paloor S, Torfeh T, Aouadi S, Hammoud R, Al-Hammadi N. Predicting respiratory motion using a novel patient specific dual deep recurrent neural networks. Biomed Phys Eng Express 2022; 8. [PMID: 36130525 DOI: 10.1088/2057-1976/ac938f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022]
Abstract
Real-time tracking of a target volume is a promising solution for reducing the planning margins and both dosimetric and geometric uncertainties in the treatment of thoracic and upper-abdomen cancers. Respiratory motion prediction is an integral part of real-time tracking to compensate for the latency of tracking systems. The purpose of this work was to develop a novel method for accurate respiratory motion prediction using dual deep recurrent neural networks (RNNs). The respiratory motion data of 111 patients were used to train and evaluate the method. For each patient, two models (Network1 and Network2) were trained on 80% of the respiratory wave, and the remaining 20% was used for evaluation. The first network (Network 1) is a "coarse resolution" prediction of future points and second network (Network 2) provides a "fine resolution" prediction to interpolate between the future predictions. The performance of the method was tested using two types of RNN algorithms : Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The accuracy of each model was evaluated using the root mean square error (RMSE) and mean absolute error (MAE). Overall, the RNN model with GRU- function had better accuracy than the RNN model with LSTM-function (RMSE (mm): 0.4±0.2 vs. 0.6±0.3; MAE (mm): 0.4±0.2 vs. 0.6±0.2). The GRU was able to predict the respiratory motion accurately (<1 mm) up to the latency period of 440 ms, and LSTM's accuracy was acceptable only up to 240 ms. The proposed method using GRU function can be used for respiratory-motion prediction up to a latency period of 440 ms.
Collapse
Affiliation(s)
- S A Yoganathan
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 3050, QATAR
| | - Satheesh Paloor
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 0000, QATAR
| | - Tarraf Torfeh
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 3050, QATAR
| | - Souha Aouadi
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 3050, QATAR
| | - Rabih Hammoud
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 0000, QATAR
| | - Noora Al-Hammadi
- Radiation Oncology, National Center for Cancer Care and Research, Doha, Doha, 3050, QATAR
| |
Collapse
|
16
|
Borgonovo G, Paulicelli E, Daniele D, Presilla S, Richetti A, Valli M. Deep inspiration breath hold in post-operative radiotherapy for right breast cancer: a retrospective analysis. Rep Pract Oncol Radiother 2022; 27:717-723. [PMID: 36196427 PMCID: PMC9521696 DOI: 10.5603/rpor.a2022.0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background The aim of our study is to determine whether deep inspiration breath hold (DIBH) is effective for reducing exposure of the heart, left coronary artery (LAD) and both lungs in right breast radiotherapy. Materials and methods We have analyzed 10 consecutive patients with right-sided breast cancer (BC), simulated during free breathing (FB) and in DIBH modality. For all patients we contoured breast PTV and organs at risk (right and left lungs, heart, LAD) on both CT scans (FB and DIBH). Finally, 5 patients were treated with IMRT and 5 with VMAT techniques. Results All patients were able to end the treatments in DIBH modalities regardless of the longer treatment time in comparison to FB. The maximum and mean dose to the heart are lower in the DIBH modality. The mean values of the heart mean dose were 1.76 Gy in DIBH and 2.19 Gy in FB. The mean heart maximum dose in DIBH and FB were, respectively, 9.3 Gy and 11 Gy. Likewise, the maximum dose to the LAD is lower in DIBH; 2.57 Gy versus 3.56 Gy in FB. Noteworthy, 3 patients with hepatomegaly treated with the DIBH technique showed a higher ipsilateral lung dose than FB, but a decrease of liver dose. Conclusion We report that the use of DIBH for right-sided BC allows the dose to the heart, LAD and to the liver to be reduced in case of hepatomegaly. This technique is well tolerated by patients, when adequately trained, and could be considered effective even in right sided BC.
Collapse
Affiliation(s)
- Giulia Borgonovo
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Eleonora Paulicelli
- Istituto di Imaging della Svizzera Italiana (IIMSI), Bellinzona, Switzerland
| | - Deborah Daniele
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Stefano Presilla
- Istituto di Imaging della Svizzera Italiana (IIMSI), Bellinzona, Switzerland
| | - Antonella Richetti
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Mariacarla Valli
- Clinic of Radiation Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
17
|
Efficacy and Optimal Pressure of Continuous Positive Airway Pressure in Intensity-Modulated Radiotherapy for Locally Advanced Lung Cancer. Cancers (Basel) 2022; 14:cancers14174308. [PMID: 36077844 PMCID: PMC9454671 DOI: 10.3390/cancers14174308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
We aimed to determine the optimal pressure of continuous positive airway pressure (CPAP) for radiotherapy (RT) through changes in the dosimetric parameters and lung volume according to pressure. Patients with locally advanced lung cancer, who underwent CPAP during computed tomography (CT) simulation, were included. The air pressure was raised in five steps of 4, 7, 10, 14, and 17 cmH2O and a CT scan was performed at the baseline and at each pressure step, accompanied by contouring and RT planning. Paired t- and Wilcoxon signed rank tests were used to compare the volumetric and dosimetric parameters according to pressure and interpressure. A total of 29 patients were selected, and 158 CT datasets were obtained. The lung volume increased significantly at all pressures (p < 0.01). The Dmean of the lung decreased significantly from 7 cmH2O (p < 0.01), the V5, V10, V15, and V20 of the lung decreased significantly from 7 cmH2O with increasing pressure, and the Dmean and V5 of the heart decreased significantly from 14 cmH2O with increasing pressure. The V50 showed no significant differences at any pressure. We recommend the use of at least 7 cmH2O with 14 cmH2O as the optimal pressure to achieve the effect of heart preservation.
Collapse
|
18
|
Harris W, Yorke E, Li H, Czmielewski C, Chawla M, Lee RP, Hotca-Cho A, McKnight D, Rimner A, Lovelock DM. Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy? Med Phys 2022; 49:2621-2630. [PMID: 35192211 PMCID: PMC9007909 DOI: 10.1002/mp.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy. METHODS 41 patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor. DIBH treatment was gated by tracking the EMT positions. Breath-hold cone-beam-CTs (CBCTs) were acquired prior to every HF treatment or weekly for CF patients. Retrospectively, rigid registrations between each CBCT and the breath-hold planning CT were performed to match to 1) spine 2) EMTs and 3) tumor. Absolute differences in registration between EMTs and spine were analyzed to determine surrogacy of EMTs for lung inflation. Differences in registration between EMTs and tumor were analyzed to determine surrogacy of EMTs for tumor position. The stability of the EMTs was evaluated by analyzing the difference between inter-EMT displacements recorded at treatment from that of the plan for the CF patients, as well as the geometric residual (GR) recorded at the time of treatment. RESULTS 219 CBCTs were analyzed. The average differences between EMT centroid and spine registration among all CBCTs were 0.45±0.42cm, 0.29±0.28cm, and 0.18±0.15cm in superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively. Only 59% of CBCTs had differences in registration <0.5cm for EMT centroid compared to spine, indicating that lung inflation is not reproducible from simulation to treatment. The average differences between EMT centroid and tumor registration among all CBCTs were 0.13±0.13cm, 0.14±0.13cm and 0.12±0.12cm in SI, AP and lateral directions, respectively. 95% of CBCTs resulted in <0.5cm change between EMT centroid and tumor registration, indicating that EMT positions correspond well with tumor position during treatments. Six out of the 7 recorded CF patients had average differences in inter-EMT displacements to be ≤0.26cm and average GR ≤0.22cm, indicating that the EMTs are stable throughout treatment. CONCLUSIONS Bronchoscopically implanted anchored EMTs are good surrogates for tumor position and are reliable for maintaining tumor position when tracked during DIBH treatment, as long as the tumor size and shape are stable. Large differences in registration between EMTs and spine for many treatments suggest that lung inflation achieved at simulation is often not reproduced. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Henry Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Robert P Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Alexandra Hotca-Cho
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Dominique McKnight
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - D Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
19
|
Abstract
We present the update of the recommendations of the French society of oncological radiotherapy on respiratory motion management for external radiotherapy treatment. Since twenty years and the report 62 of ICRU, motion management during the course of radiotherapy treatment has become an increasingly significant concern, particularly with the development of hypofractionated treatments under stereotactic conditions, using reduced safety margins. This article related orders of motion amplitudes for different organs as well as the definition of the margins in radiotherapy. An updated review of the various movement management strategies is presented as well as main technological solutions enabling them to be implemented: when acquiring anatomical data, during planning and when carrying out treatment. Finally, the management of these moving targets, such as it can be carried out in radiotherapy departments, will be detailed for a few concrete examples of localizations (abdominal, thoracic and hepatic).
Collapse
|
20
|
Results of Radiation Therapy as Local Ablative Therapy for Oligometastatic Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13225773. [PMID: 34830925 PMCID: PMC8616303 DOI: 10.3390/cancers13225773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Oligometastatic cancer is characterized by a limited number of metastatic deposits. Compared with lung cancer patients who have more widespread disease, oligometastatic lung cancer patients have more favorable survival outcomes. Therefore, it has been hypothesized that local ablative therapy (LAT) directed at the metastatic deposits in addition to standard-of-care systemic therapy may further improve survival outcomes in oligometastatic lung cancer patients. One LAT modality that has been utilized in oligometastatic lung cancer is radiation therapy. In particular, ultra-hypofractionated radiotherapy, also known as stereotactic body radiotherapy (SBRT), has been shown to provide excellent local control with a favorable safety profile. Here, we reviewed the retrospective studies and prospective trials that have deployed radiation therapy as LAT in oligometastatic lung cancer, including randomized studies showing benefits for progression-free survival and overall survival with the addition of LAT. We also discuss the impact of targeted therapies and immunotherapy on radiation as LAT.
Collapse
|
21
|
Holla R, Khanna D, Narayanan VKS, Dutta DN. Analysis of normal lung irradiation in radiosurgery treatments: a comparison of lung optimized treatment (LOT) on cyberknife, 4D target volume on helical tomotherapy, and DIBH on linear accelerator. Phys Eng Sci Med 2021; 44:1321-1329. [PMID: 34724161 DOI: 10.1007/s13246-021-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Quantitative retrospective analysis of the normal lung irradiation due to the variations of the ITV volume based on the techniques used for upper lobe (UL), mid lobe (ML), and lower lobe (LL) lung tumours when used with 2-view, 1-view, 0-view based LOT technique on Cyberknife, AveIP on Helical Tomotherapy, and DIBH on VMAT systems. In the treatment of lung tumours, patients medically inoperable or those who are unwilling to undergo surgery have the option to be treated using radiation therapy. There are many motion control techniques available for the treatment of the moving target, such as movement encompassment, respiratory gating, breath-hold, motion reduction, and tumour monitoring. ITV generation is dependent on technique and hence the volume of the PTVs will differ based on the technique used. This study aimed to determine the influence of these ITVs on the irradiated normal lung volume for UL, ML, and LL lung tumours for 23 patients. The mean difference in the PTV volumes generated with the 0-view technique was significant with that of 2-view and DIBH techniques (p-value < 0.04). The mean difference in the PTV volumes generated by 2-view and DIBH was small for UL, ML, and LL tumours. V5 of the combined lung with the 0-view method was 5% compared to the 2-view method for UL tumours (p-value = 0.04) and the same was 9.5%, and 16.8% for ML and LL tumours (p-value < 0.04). In contrast to all other techniques, lung volume parameters V5, V10, V20, and V30 for the 0-view technology were consistently higher irrespective of the tumour location in the lung. The observed maximum mean lung dose (MLD) was 6.2 Gy ± 2.7 Gy with the 0-view technique and the minimum was 3.85 Gy ± 1.75 Gy with the DIBH technique. The difference in MLD between DIBH and 2-view was negligible (p-value = 0.67). The MLD increased for LL tumours from 4 Gy to 6.5 Gy from the 2-view to 0-view technique (p-value = 0.009). There was a significant increase in MLD for LL tumours with the 0-view technique compared to AveIP (1.9 Gy, p-value = 0.04) and DIBH (2.0 Gy, p-value = 0.003) technique. For ML and UL tumours, except for 0-view and 1-view, the difference in the MLD between the rest of the methods was not significant (p-value > 0.11). In the treatment of lung tumour patients with SBRT, this study has demonstrated 2-view with Cyberknife and DIBH with VMAT treatment techniques have optimal normal lung tissue sparing. There was a significant increase in the average lung volume receiving 5%,10%, 20%, and 30% dose when comparing the 1-view, 0-view, AveIP, and DIBH techniques to the 2-view technique. However, DIBH with VMAT was dosimetrically advantageous for ML and LL tumours, while providing significantly shorter treatment times than any other technique studied.
Collapse
Affiliation(s)
| | - D Khanna
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | | | - Deb Narayan Dutta
- Department of Radiation Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
22
|
Qi Y, Li J, Zhang Y, Shao Q, Liu X, Li F, Wang J, Li Z, Wang W. Effect of abdominal compression on target movement and extension of the external boundary of peripheral lung tumours treated with stereotactic radiotherapy based on four-dimensional computed tomography. Radiat Oncol 2021; 16:173. [PMID: 34493303 PMCID: PMC8425044 DOI: 10.1186/s13014-021-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of abdominal compression on tumour motion and target volume and to determine suitable planning target volume (PTV) margins for patients treated with lung stereotactic body radiotherapy (SBRT) based on four-dimensional computed tomography (4DCT). METHODS Twenty-three patients diagnosed to have a peripheral pulmonary tumour were selected and divided into an all lesions group (group A), an upper middle lobe lesions group (group B), and a lower lobe lesions group (group C). Two 4DCT scans were performed in each patient, one with and one without abdominal compression. Cone beam computed tomography (CBCT) was performed before starting treatment. The gross target volumes (GTVs) were delineated and internal gross target volumes (IGTVs) were defined. IGTVs were generated using two methods: (1) the maximum intensity projections (MIPs) based on the 4DCT were reconstructed to form a single volume and defined as the IGTVMIP and (2) GTVs from all 10 phases were combined to form a single volume and defined as the IGTV10. A 5-mm, 4-mm, and 3-mm margin was added in all directions on the IGTVMIP and the volume was constructed as PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm. RESULTS There was no significant difference in the amplitude of tumour motion in the left-right, anterior-posterior, or superior-inferior direction according to whether or not abdominal compression was applied (group A, p = 0.43, 0.27, and 0.29, respectively; group B, p = 0.46, 0.15, and 0.45; group C, p = 0.79, 0.86, and 0.37; Wilcoxon test). However, the median IGTVMIP without abdominal compression was 33.67% higher than that with compression (p = 0.00), and the median IGTV10 without compression was 16.08% higher than that with compression (p = 0.00). The median proportion of the degree of inclusion of the IGTVCBCT in PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm ≥ 95% was 100%, 100%, and 83.33%, respectively. CONCLUSIONS Abdominal compression was useful for reducing the size of the IGTVMIP and IGTV10 and for decreasing the PTV margins based on 4DCT. In IGTVMIP with abdominal compression, adding a 4-mm margin to account for respiration is feasible in SBRT based on 4DCT.
Collapse
Affiliation(s)
- Yuanjun Qi
- Shandong First Medical University and Shandong Academy of Medical Sciences and Now Studies at Shandong Cancer Hospital and Institute , Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Jinzhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| |
Collapse
|
23
|
Botticella A, Levy A, Auzac G, Chabert I, Berthold C, Le Pechoux C. Tumour motion management in lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2011-2017. [PMID: 34012810 PMCID: PMC8107759 DOI: 10.21037/tlcr-20-856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory motion is one of the geometrical uncertainties that may affect the accuracy of thoracic radiotherapy in the treatment of lung cancer. Accounting for tumour motion may allow reducing treatment volumes, irradiated healthy tissue and possibly toxicity, and finally enabling dose escalation. Historically, large population-based margins were used to encompass tumour motion. A paradigmatic change happened in the last decades led to the development of modern imaging techniques during the simulation and the delivery, such as the 4-dimensional (4D) computed tomography (CT) or the 4D-cone beam CT scan, has contributed to a better understanding of lung tumour motion and to the widespread use of individualised margins (with either an internal tumour volume approach or a mid-position/ventilation approach). Moreover, recent technological advances in the delivery of radiotherapy treatments (with a variety of commercial solution allowing tumour tracking, gating or treatments in deep-inspiration breath-hold) conjugate the necessity of minimising treatment volumes while maximizing the patient comfort with less invasive techniques. In this narrative review, we provided an introduction on the intra-fraction tumour motion (in both lung tumours and mediastinal lymph-nodes), and summarized the principal motion management strategies (in both the imaging and the treatment delivery) in thoracic radiotherapy for lung cancer, with an eye on the clinical outcomes.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France
| | - Guillaume Auzac
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Isabelle Chabert
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Céline Berthold
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
24
|
Zhang L, LoSasso T, Zhang P, Hunt M, Mageras G, Tang G. Couch and multileaf collimator tracking: A clinical feasibility study for pancreas and liver treatment. Med Phys 2020; 47:4743-4757. [PMID: 32757298 PMCID: PMC8330968 DOI: 10.1002/mp.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Real-time tumor tracking through active correction by the multileaf collimator or treatment couch offers a promising strategy to mitigate delivery uncertainty due to intrafractional tumor motion. This study evaluated the performance of MLC and couch tracking using the prototype iTools Tracking system in TrueBeam Developer Mode and the application for abdominal cancer treatments. METHODS Experiments were carried out using a phantom with embedded Calypso transponders and a motion simulation platform. Geometric evaluations were performed using a circular conformal field with sinusoidal traces and pancreatic tumor motion traces. Geometric tracking accuracy was retrospectively calculated by comparing the compensational MLC or couch motion extracted from machine log files to the target motion reconstructed from real-time MV and kV images. Dosimetric tracking accuracy was measured with radiochromic films using clinical abdominal VMAT plans and pancreatic tumor traces. RESULTS Geometrically, the root-mean-square errors for MLC tracking were 0.5 and 1.8 mm parallel and perpendicular to leaf travel direction, respectively. Couch tracking, in contrast, showed an average of 0.8 mm or less geometric error in all directions. Dosimetrically, both MLC and couch tracking reduced motion-induced local dose errors compared to no tracking. Evaluated with five pancreatic tumor motion traces, the average 2%/2 mm global gamma pass rate of eight clinical abdominal VMAT plans was 67.4% (range: 26.4%-92.7%) without tracking, which was improved to 86.0% (range: 67.9%-95.6%) with MLC tracking, and 98.1% (range: 94.9%-100.0%) with couch tracking. In 16 out of 40 deliveries with different plans and motion traces, MLC tracking did not achieve clinically acceptable dosimetric accuracy with 3%/3mm gamma pass rate below 95%. CONCLUSIONS This study demonstrated the capability of MLC and couch tracking to reduce motion-induced dose errors in abdominal cases using a prototype tracking system. Clinically significant dose errors were observed with MLC tracking for certain plans which could be attributed to the inferior MLC tracking accuracy in the direction perpendicular to leaf travel, as well as the interplay between motion tracking and plan delivery for highly modulated plans. Couch tracking outperformed MLC tracking with consistently high dosimetric accuracy in all plans evaluated, indicating its clinical potential in the treatment of abdominal cancers.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Thomas LoSasso
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gig Mageras
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Grace Tang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
25
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
26
|
Ellerau M, Odenbach R, Friebe M. Feasibility Study of a novel MRI-safe and interactive respiratory biofeedback system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5477-5480. [PMID: 31947095 DOI: 10.1109/embc.2019.8857668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper presents a feasibility study of a novel MRI-safe and interactive respiratory biofeedback system. Breathing-induced organ motion is a huge problem in medical imaging as well as in radiation therapy. Controlled breathing is an essential requirement for the efficiency of a successful diagnosis and therapy. To address this problem, a new interactive feedback system was developed. A commando unit provides instructions regarding the desired respiration pattern for the proband and a feedback unit gives a response about the deviation between the actual and the desired respiratory motion. A first feasibility study confirmed the viability of the new system. By means of the interactive biofeedback system, the test persons were able to adjust their respiration according to a prescribed breathing pattern. Our results showed that an interactive respiratory biofeedback system is able to reduce breathing motion and with that could be very beneficial for MR-imaging and also for radiation therapy procedures.
Collapse
|
27
|
Pandeli C, Smyth LML, David S, See AW. Dose reduction to organs at risk with deep-inspiration breath-hold during right breast radiotherapy: a treatment planning study. Radiat Oncol 2019; 14:223. [PMID: 31822293 PMCID: PMC6905024 DOI: 10.1186/s13014-019-1430-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023] Open
Abstract
Background The addition of regional nodal radiation (RNI) to whole breast irradiation for high risk breast cancer improves metastases free survival and new data suggests it contributes additional benefit to overall survival. Deep inspiration breath hold (DIBH) has been shown to reduce cardiac and pulmonary dose in the context of left-sided disease treated with or without RNI, yet few studies have investigated its utility for right-breast cancer. This study investigates the potential advantages of DIBH in local and locoregional radiotherapy for right-sided breast cancer. Methods Free-breathing (FB) and DIBH computed tomography datasets were obtained from twenty patients who previously underwent radiotherapy for left-sided breast cancer. Ten patients were retrospectively planned for whole right breast only irradiation and ten patients were planned for irradiation to the whole breast plus ipsilateral supra-clavicular (SC) nodes, with and without irradiation of the ipsilateral internal mammary nodes (IMN). Dose-volume metrics for the clinical target volume, lungs, heart, left anterior descending artery, right coronary artery (RCA) and liver were recorded. Differences between FB and DIBH plans were analysed using Wilcoxon signed-rank tests, with P < 0.05 considered statistically significant. Results DIBH increased the average total lung volume compared to FB in both breast only and breast plus RNI cohorts (P = 0.001). For the breast only group, there was no significant improvement in any ipsilateral lung dose-volume metric between FB and DIBH. However, for the breast plus RNI group, there was an improvement in ipsilateral lung mean dose (18.9 ± 3.2 Gy to 15.9 ± 2.3 Gy, P = 0.002) and V20Gy (45.3 ± 13.3% to 32.9 ± 9.4%, P = 0.002). In addition, DIBH significantly reduced the maximum dose to the RCA for RNI (11.6 ± 7.2 Gy to 5.6 ± 2.9 Gy, P = 0.03). Significant reductions in the liver V20Gy and maximum dose were observed in all cohorts during DIBH compared to FB. Conclusions DIBH is a promising approach for right-breast radiotherapy with considerable sparing of normal tissue, particularly when the ipsilateral IMNs are also irradiated.
Collapse
Affiliation(s)
- Chloe Pandeli
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia.
| | - Lloyd M L Smyth
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia
| | - Steven David
- Icon Cancer Centre, Mulgrave, Victoria, 3170, Australia
| | - Andrew W See
- Icon Cancer Centre, Level 4, The Epworth Centre, 32 Erin Street, Richmond, Victoria, 3121, Australia
| |
Collapse
|
28
|
Van Ooteghem G, Dasnoy-Sumell D, Lee JA, Geets X. Mechanically-assisted and non-invasive ventilation for radiation therapy: A safe technique to regularize and modulate internal tumour motion. Radiother Oncol 2019; 141:283-291. [PMID: 31653574 DOI: 10.1016/j.radonc.2019.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Current motion mitigation strategies, like margins, gating, and tracking, deal with geometrical uncertainties in the tumour position, induced by breathing during radiotherapy (RT). However, they often overlook motion variability in amplitude, respiratory rate, or baseline position, when breathing spontaneously. Consequently, this may negatively affect the delivered dose conformality in comparison to the plan. We previously demonstrated on volunteers that 3 different modes of mechanically-assisted and non-invasive ventilation (MANIV) may reduce variability in breathing motion. The volume-controlled mode (VC) constraints the amplitude and respiratory rate (RR) in physiologic condition. The shallow-controlled mode (SH), derived from VC, increases the RR and decreases amplitude. The slow-controlled mode (SL) induces repeated breath holds with constrained ventilation pressure. In this study, we compared these mechanical ventilation modes to spontaneous breathing or breath hold and assessed their tolerance and effects on internal tumour motion in patients receiving RT. MATERIAL AND METHODS The VC and SH modes were evaluated in ten patients with lung or liver cancers (cohort A). The SL mode was evaluated in 12 left breast cancer patients (cohort B). After a training and simulation session, the patients underwent 2 MRI sessions to analyze the internal motion of breast and tumour. RESULTS MANIV was well tolerated, without any adverse events or oxymetric changes, even in patients with respiratory comorbidities. In cohort A, when compared to spontaneous breathing (SP), VC reduced significantly inter-session variations of the tumour motion amplitude (p = 0.01), as well as intra- and inter-session variations of the RR (p < 0.05). As to SH, the RR increased, while its variations within and across sessions decreased when compared to SP (p < 0.001). SH reduced the median amplitude of the tumour motion by 6.1 mm or 38.2% (p ≤ 0.01) compared to VC. In cohort B, breast position stability over the end-inspiratory plateaus obtained spontaneously or with SL remained similar. Median duration of the plateaus in SL was 16.6 s. CONCLUSION MANIV is a safe and well tolerated ventilation technique for patients receiving radiotherapy. MANIV could thus make current motion mitigation strategies less critical and more robust. Clinical implementation might be considered, provided the ventilation mode is carefully selected with respect to the treatment indication and patient individualities.
Collapse
Affiliation(s)
- Geneviève Van Ooteghem
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium.
| | - Damien Dasnoy-Sumell
- Université Catholique de Louvain, ImagX-R, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain-La-Neuve, Belgium
| | - John Aldo Lee
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xavier Geets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium
| |
Collapse
|
29
|
Fraction-specific post-treatment quality assurance for active breath-hold radiation therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPurposeThe purpose of this study is to evaluate variation in the treatment hold pattern and quantify its dosimetric impact in breath-hold radiotherapy, using fraction-specific post-treatment quality assurance.Material and MethodsA patient with lung mets treated using intensity-modulated radiation therapy (IMRT) with active breath coordinator (ABC) was recruited for the study. Treatment beam hold conditions were recorded for all the 25 fractions. The linearity and reproducibility of the dosimetric system were measured. Variation in the dose output of unmodulated open beam with beam hold was studied. Patient-specific quality assurance (PSQA) was performed with and without beam hold, and the results were compared to quantify the dosimetric impact of beam hold.ResultsThere was a considerable amount of variation observed in the number of beam hold for the given field and the monitor unit at which the beam held. Linearity and reproducibility of the dosimetric system were found within the acceptable limits. The average difference over the 25 measurements was 0·044% (0·557 to −0·318%) with standard deviation of 0·248.ConclusionPatient comfort with the ABC system and responsiveness to the therapist communication help to maintain consistent breathing pattern, in turn consistent treatment delivery pattern. However, the magnitude of dosimetric error is much less than the acceptable limits recommended by IROC. The dosimetric error induced by the beam hold is over and above the dose difference observed in conventional PSQA.
Collapse
|
30
|
Hamming VC, Visser C, Batin E, McDermott LN, Busz DM, Both S, Langendijk JA, Sijtsema NM. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol 2019; 14:125. [PMID: 31296245 PMCID: PMC6624957 DOI: 10.1186/s13014-019-1329-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine the accuracy of a surface guided radiotherapy (SGRT) system for positioning of breast cancer patients in breath-hold (BH) with respect to cone-beam computed tomography (CBCT). Secondly, to evaluate the thorax position stability during BHs with SGRT, when using an air-volume guidance system. METHODS AND MATERIALS Eighteen left-sided breast cancer patients were monitored with SGRT during CBCT and treatment, both in BH. CBCT scans were matched on the target volume and the patient surface. The setup error differences were evaluated, including with linear regression analysis. The intra-fraction variability and stability of the air-volume guided BHs were determined from SGRT measurements. The variability was determined from the maximum difference between the different BH levels within one treatment fraction. The stability was determined from the difference between the start and end position of each BH. RESULTS SGRT data correlated well with CBCT data. The correlation was stronger for surface-to-CBCT (0.61) than target volume-to-CBCT (0.44) matches. Systematic and random setup error differences were ≤ 2 mm in all directions. The 95% limits of agreement (mean ± 2SD) were 0.1 ± 3.0, 0.6 ± 4.1 and 0.4 ± 3.4 mm in the three orthogonal directions, for the surface-to-CBCT matches. For air-volume guided BHs, the variability detected with SGRT was 2.2, 2.8 and 2.3 mm, and the stability - 1.0, 2.1 and 1.5 mm, in three orthogonal directions. Furthermore, the SGRT system could detect unexpected patient movement, undetectable by the air-volume BH system. CONCLUSION With SGRT, left-sided breast cancer patients can be positioned and monitored continuously to maintain position errors within 5 mm. Low intra-fraction variability and good stability can be achieved with the air-volume BH system, however, additional patient position information is available with SGRT, that cannot be detected with air-volume BH systems.
Collapse
Affiliation(s)
- Vincent C. Hamming
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Christa Visser
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Estelle Batin
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Leah N. McDermott
- Department of Radiation Oncology, Northwest Clinics, Alkmaar, The Netherlands
| | - Dianne M. Busz
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nanna M. Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
31
|
Lee S, Zheng Y, Podder T, Biswas T, Verma V, Goss M, Colonias A, Fuhrer R, Zhai Y, Parda D, Sohn J. Tumor localization accuracy for high-precision radiotherapy during active breath-hold. Radiother Oncol 2019; 137:145-152. [PMID: 31103912 DOI: 10.1016/j.radonc.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Conventionally fractionated and stereotactic body radiation therapy (SBRT) for thoracoabdominal tumors may utilize breath-hold techniques. However, there are concerns that differential amounts of inspired airflow may result in unplanned tumor dislocation and underdosing. Thus, we investigated tumor localization accuracy associated with lung volume variations during breath-hold treatment via an automated-gating interface. METHODS Twelve patients received breath-hold treatment with the active breathing coordinator (ABC) through an automated-gating interface. All breath-hold volumes were recorded at CT simulation, setup imaging, and during treatment, and analyzed as a function of airflow rate into the ABC. The variation of breath-hold volumes was calculated for each fraction over entire course. Intrafraction target motion related to the breathing variation was investigated based on daily imaging acquired before the breath-hold treatment. Correlation between target location and breath-hold variation was statistically analyzed. RESULTS The air volume held by the ABC increased as the airflow rate increased on inhalation and decreased on exhalation. The mean range of airflow rate was 0.77 L/s and 0.29 L/s in the conventionally fractionated and SBRT patients, respectively. The maximum air volume difference with respect to the reference volume at the CT simulation was 1.0 L for conventional fractionation and 0.16 L for SBRT. The target dislocation caused by 0.25 L of air volume difference was 6 mm for SBRT. Three patients showed significant correlation between the target location and breath-hold variations. CONCLUSIONS This investigation shows that because variations in the breath-hold volume may cause target dislocation, patient-specific breath-hold setting is required to improve tumor localization accuracy.
Collapse
Affiliation(s)
- Soyoung Lee
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States.
| | - Yiran Zheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Tarun Podder
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States; Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, United States
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Matthew Goss
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Athanasios Colonias
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Russell Fuhrer
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Yongjun Zhai
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, United States
| | - David Parda
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| | - Jason Sohn
- Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, United States
| |
Collapse
|
32
|
Oh SA, Yea JW, Kim SK, Park JW. Optimal Gating Window for Respiratory-Gated Radiotherapy with Real-Time Position Management and Respiration Guiding System for Liver Cancer Treatment. Sci Rep 2019; 9:4384. [PMID: 30867519 PMCID: PMC6416406 DOI: 10.1038/s41598-019-40858-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Respiratory-gated radiotherapy is one of the most effective approaches to minimise radiation dose delivery to normal tissue and maximise delivery to tumours under patient's motion caused by respiration. We propose a respiration guiding system based on real-time position management with suitable gating window for respiratory-gated radiotherapy applied to liver cancer. Between August 2016 and February 2018, 52 patients with liver cancer received training in real-time position management and respiration guiding. Respiration signals were statistically analysed during unguided respiration and when applying the respiration guiding system. Phases of 30-60% and 30-70% retrieved the lowest respiration variability among patients, and 47 patients exhibited significant differences in terms of respiration reproducibility between unguided and guided respiration. The results suggest that either of these phases can establish suitable windows for gated radiotherapy applied to liver cancer, especially regarding respiration reproducibility.
Collapse
Affiliation(s)
- Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Sung Kyu Kim
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea.
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
33
|
Pepin MD, Tryggestad E, Wan Chan Tseung HS, Johnson JE, Herman MG, Beltran C. A Monte-Carlo-based and GPU-accelerated 4D-dose calculator for a pencil beam scanning proton therapy system. Med Phys 2018; 45:5293-5304. [PMID: 30203550 DOI: 10.1002/mp.13182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The presence of respiratory motion during radiation treatment leads to degradation of the expected dose distribution, both for target coverage and healthy tissue sparing, particularly for techniques like pencil beam scanning proton therapy which have dynamic delivery systems. While tools exist to estimate this degraded four-dimensional (4D) dose, they typically have one or more deficiencies such as not including the particular effects from a dynamic delivery, using analytical dose calculations, and/or using nonphysical dose-accumulation methods. This work presents a clinically useful 4D-dose calculator that addresses each of these shortcomings. METHODS To quickly compute the 4D dose, the three main tasks of the calculator were run on graphics processing units (GPUs). These tasks were (a) simulating the delivery of the plan using measured delivery parameters to distribute the plan amongst 4DCT phases characterizing the patient breathing, (b) using an in-house Monte Carlo simulation (MC) dose calculator to determine the dose delivered to each breathing phase, and (c) accumulating the doses from the various breathing phases onto a single phase for evaluation. The accumulation was performed by individually transferring the energy and mass of dose-grid subvoxels, a technique that models the transfer of dose in a more physically realistic manner. The calculator was run on three test cases, with lung, esophagus, and liver targets, respectively, to assess the various uncertainties in the beam delivery simulation as well as to characterize the dose-accumulation technique. RESULTS Four-dimensional doses were successfully computed for the three test cases with computation times ranging from 4-6 min on a server with eight NVIDIA Titan X graphics cards; the most time-consuming component was the MC dose engine. The subvoxel-based dose-accumulation technique produced stable 4D-dose distributions at subvoxel scales of 0.5-1.0 mm without impairing the total computation time. The uncertainties in the beam delivery simulation led to moderate variations of the dose-volume histograms for these cases; the variations were reduced by implementing repainting or phase-gating motion mitigation techniques in the calculator. CONCLUSIONS A MC-based and GPU-accelerated 4D-dose calculator was developed to estimate the effects of respiratory motion on pencil beam scanning proton therapy treatments. After future validation, the calculator could be used to assess treatment plans and its quick runtime would make it easily usable in a future 4D-robust optimization system.
Collapse
Affiliation(s)
- Mark D Pepin
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Hok Seum Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Jedediah E Johnson
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN, 55905, USA
| |
Collapse
|
34
|
Frelin AM, Beaudouin V, Le Deroff C, Roger T. Implementation and evaluation of respiratory gating in small animal radiotherapy. Phys Med Biol 2018; 63:215024. [PMID: 30375369 DOI: 10.1088/1361-6560/aae760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Major advance was done in preclinical radiotherapy thanks to the development of image guided micro-irradiator. Nevertheless, some applications still can benefit of improvements, such as the irradiation of mobile tumors. This preclinical radiotherapy case presents increased difficulties compared to clinical practice because of the waveform of small animals breathing cycle, its frequency and amplitude. To answer this issue, we developed a specific beam shutter and implemented respiratory gating on the X-RAD 225Cx preclinical irradiator. In the first step of this study, the shutter was accurately characterized. Opening and closing speed of 1.28 and 0.33 mm ms-1 were respectively measured, and a transmission of 0.7% of the beam was measured with the shutter fully closed. Beam-on times were also determined for various gating parameters and highlighted a difference of 57 ms between the beam delivery duration and the gate width. This discrepancy was compensated during the respiratory monitoring adjustment. In a second step, a respiratory protocol was evaluated with two vertical beams of 2.5 and 5 mm diameters, for motion amplitudes ranging from 0.5 to 4 mm. This evaluation demonstrated the effectiveness of our set up to perform motion compensation for amplitude as small as 0.5 mm despite a dose gradient of 1.47 cGy mm-1 observed with the 5 mm irradiation field, due to the shutter opening and closing durations. We also investigated the efficiency of a scintillating fiber dosimeter, adapted to small beams and providing real-time dose rate measurements. This detector showed very good performances to detect motion in small irradiation fields and would be very suitable to monitor the number of delivered gates until the planned delivered dose is achieved. This study presented a new respiratory gating set up and showed that very efficient motion compensation could be achieved in small animal radiotherapy.
Collapse
Affiliation(s)
- A-M Frelin
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France. Advanced Resource Centre for Hadrontherapy in Europe (ARCHADE) Program, Caen, France
| | | | | | | |
Collapse
|
35
|
Farzaneh MJK, Nasseri S, Momennezhad M, Salek R. Design and Construction of A Laser-Based Respiratory Gating System For Implementation of Deep Inspiration Breathe Hold Technique in Radiotherapy Clinics. JOURNAL OF MEDICAL SIGNALS & SENSORS 2018; 8:253-262. [PMID: 30603618 PMCID: PMC6293641 DOI: 10.4103/jmss.jmss_35_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Deep inspiration breath-hold (DIBH) is known as a radiotherapy method for the treatment of patients with left-sided breast cancer. In this method, patient is under exposure only while he/she is at the end of a deep inspiration cycle and holds his/her breath. In this situation, the volume of the lung tissue is enhanced and the heart tissue is pushed away from the treating breast. Therefore, heart dose of these patients, using DIBH, experiences a considerable decline compared to free breathing treatment. There are a few commercialized systems for implementation of DIBH in invasive or noninvasive manners. METHODS We present a novel constructed noninvasive DIBH device relied on a manufacturing near-field laser distance meter. This in-house constructed system is composed of a CD22-100AM122 laser sensor combined with a data acquisition system for monitoring the breathing curve. Qt Creator (a cross-platform JavaScript, QML, and C++-integrated development environment that is part of the SDK for development of the Qt Graphical User Interface application framework) and Keil MDK-ARM (a programming software where users can write in C and C++ and assemble for ARM-based microcontrollers) are used for composing computer and microcontroller programs, respectively. RESULTS This system could be mounted in treatment or computed tomography (CT) room at suitable cost; it is also easy to use and needs a little training for personnel and patients. The system can assess the location of chest wall or abdomen in real time with high precision and frequency. The performance of CD22-100AM122 demonstrates promise for respiratory monitoring for its fast sampling rate as well as high precision. It can also deliver reasonable spatial and temporal accuracy. The patient observes his/her breathing waveform through a 7" 1024 × 600 liquid crystal display and gets some instructions during treatment and CT sessions by an exploited algorithm called "interaction scenario" in this study. The system is also noninvasive and well sustainable for patients. CONCLUSIONS The constructed system has true real-time operation and is rapid enough for delivering clear contiguous monitoring. In addition, in this system, we have provided an interaction scenario option between patient and CT or Linac operator. In addition, the constructed system has the capability of sending triggers for turning on and off CT or Linac facilities. In this concern, the system has the superiority of combining a plenty of characteristics.
Collapse
Affiliation(s)
- Mohammad Javad Keikhai Farzaneh
- Department of Medical Physics, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Nasseri
- Department of Medical Physics, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Momennezhad
- Department of Medical Physics, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Nuclear Medicine Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roham Salek
- Department of Radiation Oncology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Yegya-Raman N, Zou W, Nie K, Malhotra J, Jabbour SK. Advanced radiation techniques for locally advanced non-small cell lung cancer: intensity-modulated radiation therapy and proton therapy. J Thorac Dis 2018; 10:S2474-S2491. [PMID: 30206493 DOI: 10.21037/jtd.2018.07.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radiation therapy (RT) represents an integral part of a multimodality treatment plan in the definitive, preoperative and postoperative management of non-small cell lung cancer (NSCLC). Technological advances in RT have enabled a shift from two-dimensional radiotherapy to more conformal techniques. Three-dimensional conformal radiotherapy (3DCRT), the current minimum technological standard for treating NSCLC, allows for more accurate delineation of tumor burden by using computed tomography-based treatment planning instead of two-dimensional radiographs. Intensity-modulated RT (IMRT) and proton therapy represent advancements over 3DCRT that aim to improve the conformity of RT and provide the possibility for dose escalation to the tumor by minimizing radiation dose to organs at risk. Both techniques likely confer benefits to certain anatomic subgroups of NSCLC requiring RT. This article reviews pertinent studies evaluating the use of IMRT and proton therapy in locally advanced NSCLC, and outlines challenges, indications for use, and areas for future research.
Collapse
Affiliation(s)
- Nikhil Yegya-Raman
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
37
|
Li H, Chang JY. Accounting for, Mitigating, and Choice of Margins for Moving Tumors. Semin Radiat Oncol 2018; 28:194-200. [DOI: 10.1016/j.semradonc.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Hazelaar C, Dahele M, Mostafavi H, van der Weide L, Slotman B, Verbakel W. Markerless positional verification using template matching and triangulation of kV images acquired during irradiation for lung tumors treated in breath-hold. ACTA ACUST UNITED AC 2018; 63:115005. [DOI: 10.1088/1361-6560/aac1a9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2018. [DOI: 10.2478/pjmpe-2018-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique.
Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation.
Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x̄ ± σx̄) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans.
Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.
Collapse
|
40
|
Nakayama M, Nishimura H, Mayahara H, Nakamura M, Uehara K, Tsudou S, Harada A, Akasaka H, Sasaki R. Clinical log data analysis for assessing the accuracy of the CyberKnife fiducial-free lung tumor tracking system. Pract Radiat Oncol 2018; 8:e63-e70. [DOI: 10.1016/j.prro.2017.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022]
|
41
|
Kawahara D, Ozawa S, Nakashima T, Tsuda S, Ochi Y, Okumura T, Masuda H, Hioki K, Suzuki T, Ohno Y, Kimura T, Murakami Y, Nagata Y. Interfractional diaphragm changes during breath-holding in stereotactic body radiotherapy for liver cancer. Rep Pract Oncol Radiother 2018; 23:84-90. [PMID: 29463958 DOI: 10.1016/j.rpor.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/10/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022] Open
Abstract
Aim and background IGRT based on bone matching may produce a large target positioning error in terms of the reproducibility of expiration breath-holding on SBRT for liver cancer. We evaluated the intrafractional and interfractional errors using the diaphragm position at the end of expiration by utilising Abches and analysed the factor of the interfractional error. Materials and methods Intrafractional and interfractional errors were measured using a couple of frontal kV images, planning computed tomography (pCT) and daily cone-beam computed tomography (CBCT). Moreover, max-min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT were calculated. Results The mean ± SD (standard deviation) of the intra-fraction diaphragm position variation in the frontal kV images was 1.0 ± 0.7 mm in the C-C direction. The inter-fractional diaphragm changes were 0.4 ± 4.6 mm in the C-C direction, 1.4 ± 2.2 mm in the A-P direction, and -0.6 ± 1.8 mm in the L-R direction. There were no significant differences between the maximum value of the max-min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT. Conclusions Residual intrafractional variability of diaphragm position is minimal, but large interfractional diaphragm changes were observed. There was a small effect in the patient condition difference between pCT and CBCT. The impact of the difference in daily breath-holds on the interfractional diaphragm position was large or the difference in daily breath-holding heavily influenced the interfractional diaphragm change.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
- Course of Medical and Dental Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Takeo Nakashima
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Shintaro Tsuda
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Yusuke Ochi
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Takuro Okumura
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Hirokazu Masuda
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Kazunari Hioki
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Tathsuhiko Suzuki
- Course of Medical and Dental Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshimi Ohno
- Section of Radiation Therapy, Department of Clinical Support, Hiroshima University Hospital, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
42
|
Wei J, Chao M. A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment. Radiother Oncol 2018; 126:339-346. [DOI: 10.1016/j.radonc.2017.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022]
|
44
|
Mao R, Tian L, Zhang Y, Ren L, Gao R, Yin FF, Ge H. Dosimetric Analysis of Microscopic Disease in SBRT for Lung Cancers. Technol Cancer Res Treat 2018; 16:1113-1119. [PMID: 29332497 PMCID: PMC5762078 DOI: 10.1177/1533034617734689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The objective of this study is to theoretically and experimentally evaluate the dosimetry in the microscopic disease regions surrounding the tumor under stereotactic body radiation therapy of lung cancer. Methods: For simplicity, the tumor was considered moving along 1 dimension with a periodic function. The probability distribution function of the tumor position was generated according to the motion pattern and was used to estimate the delivered dose in the microscopic disease region. An experimental measurement was conducted to validate both the estimated dose with a probability function and the calculated dose from 4-dimensional computed tomography data using a dynamic thorax phantom. Four tumor motion patterns were simulated with cos4(x) and sin(x), each with 2 different amplitudes: 10 mm and 5 mm. A 7-field conformal plan was created for treatment delivery. Both films (EBT2) and optically stimulated luminescence detectors were inserted in and around the target of the phantom to measure the delivered doses. Dose differences were evaluated using gamma analysis with 3%/3 mm. Results: The average gamma index between measured doses using film and calculated doses using average intensity projection simulation computed tomography was 80.8% ± 0.9%. In contrast, between measured doses using film and calculated doses accumulated from 10 sets of 4-dimensional computed tomography data, it was 98.7% ± 0.6%. The measured doses using optically stimulated luminescence detectors matched very well (within 5% of the measurement uncertainty) with the theoretically calculated doses using probability distribution function at the corresponding position. Respiratory movement caused inadvertent irradiation exposure, with 70% to 80% of the dose line wrapped around the 10 mm region outside the target. Conclusion: The use of static dose calculation in the treatment planning system could substantially underestimate the actual delivered dose in the microscopic disease region for a moving target. The margin for microscopic disease may be substantially reduced or even eliminated for lung stereotactic body radiation therapy.
Collapse
Affiliation(s)
- Ronghu Mao
- 1 Department of Radiation Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Henan, China
| | - Lingling Tian
- 1 Department of Radiation Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Henan, China
| | - You Zhang
- 2 Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Lei Ren
- 2 Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Renqi Gao
- 2 Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Fang-Fang Yin
- 2 Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Hong Ge
- 1 Department of Radiation Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
45
|
Park S, Farah R, Shea SM, Tryggestad E, Hales R, Lee J. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning. Phys Med Biol 2018; 63:025015. [PMID: 29243669 DOI: 10.1088/1361-6560/aaa20b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient's chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.
Collapse
Affiliation(s)
- Seyoun Park
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | | | | | | |
Collapse
|
46
|
Aristophanous M, Chi PCM, Kao J, Williamson R, Tung S, Andraos T, Milgrom SA, Pinnix CC, Dabaja BS. Deep-Inspiration Breath-Hold Intensity Modulated Radiation Therapy to the Mediastinum for Lymphoma Patients: Setup Uncertainties and Margins. Int J Radiat Oncol Biol Phys 2017; 100:254-262. [PMID: 29100788 DOI: 10.1016/j.ijrobp.2017.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Patient setup for treating large target volumes can be challenging. In the present study, we measured the local uncertainties in the treatment of mediastinal lymphoma and investigated the need for region-specific planning target volume (PTV) margins. METHODS AND MATERIALS The data from 30 patients who had undergone radiation therapy for mediastinal lymphoma were retrospectively analyzed. A computed tomography (CT)-on-rails (CTOR) system in the treatment room was used for daily image guidance. The total PTV was split into 6 regions: neck, supraclavicular fossa, axilla, mediastinum, upper heart, and lower heart. The total PTV and the 6 local regions were separately aligned to the planning CT scan using automatic rigid registration. The residual local errors using 3 setup strategies were investigated: no image guidance, CTOR setup to total PTV, and simulated cone beam CT setup to the mediastinum. Errors were recorded in the anteroposterior, superoinferior, and right-left directions separately. Using the residual error calculations, the margins required to cover 95% of the clinical target volume for 90% of the patients was estimated. RESULTS For each patient, 12 to 21 days of daily CTOR data were available for analysis. The residual errors for the total PTV and mediastinum setups were both smaller than those with no image guidance. The lower heart region had more uncertainty with all 3 setup strategies. Margin analysis revealed that the magnitude of the margin is dependent on the imaging strategy, direction, and local region inside the PTV. Margins >7 mm are necessary to account for uncertainty in the neck, lower heart, and axilla regions even under daily CT guidance. CONCLUSIONS Setup uncertainties in the mediastinum are not uniform and are dependent on target location and imaging strategy. However, with the appropriate margin, we can target regions that might not be visualized with the available on-board imager system.
Collapse
Affiliation(s)
| | - Pai-Chun M Chi
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Jeremy Kao
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Ryan Williamson
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Sam Tung
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - Therese Andraos
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Milgrom
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Chelsea C Pinnix
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Bouthaina S Dabaja
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
47
|
Beilla S, Younes T, Vieillevigne L, Bardies M, Franceries X, Simon L. Monte Carlo dose calculation in presence of low-density media: Application to lung SBRT treated during DIBH. Phys Med 2017; 41:46-52. [DOI: 10.1016/j.ejmp.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Accepted: 04/09/2017] [Indexed: 12/25/2022] Open
|
48
|
Evaluation of a reproducible breath hold technique for the SABR treatment of lower lobe lung tumours. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396917000097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAimDeep inspiration breath hold (DIBH) is a method of motion management used in stereotactic ablative body radiotherapy (SABR) for lung tumours. An external gating block marker can be used as a tumour motion surrogate, however, inter-fraction gross target volume (GTV) displacement within DIBH occurs. This study measured this displacement during a reproducible breath hold regime. In addition, factors such as position of the gating block marker were analysed.Methods and materialsA total of 121 cone beam computed tomography scans (CBCTs) from 22 patients who received DIBH SABR were retrospectively evaluated and the magnitude of inter-fraction GTV displacement was calculated for each fraction. This data was analysed to assess if any correlation existed between tumour displacement and variation in the gating block marker position on the patient, the amplitude of breath hold (BH) at computed tomography (CT), the amplitude of BH at treatment and the tumour location.The measured tumour displacement was applied to the original planning CT to evaluate the dosimetric effect on surrounding organs at risk (OARs) using cumulative dose volume histograms (DVHs).ResultsBH amplitude was reproducible within 0·13±0·1 cm (mean±standard deviation). The magnitude of tumour displacement within BH ranged from 0 to 1·52 cm (0·41±0·28 cm). Displacement in the superior-inferior, anterior-posterior and left-right planes were 0·31±0·26 cm, 0·16±0·18 cm and 0·07±0·12 cm, respectively. No statistically significant correlation was detected between tumour displacement within DIBH and the factors investigated. The range of variation in OAR dose was −7·0 to +3·6 Gy with one statistically significant increase in OAR dose observed (oesophagus mean dose increasing by 0·16 Gy).FindingsReproducible BH was achievable across a range of patients. Inter-fraction GTV displacement measured 0·41±0·28 cm. Due to this low level of motion, the correction of soft tissue moves did not adversely affect OAR dose.
Collapse
|
49
|
Deep inspirational breath hold to reduce cardiac dose in left-sided breast radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396917000152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackgroundDuring left-sided breast radiotherapy, the heart is often exposed to radiation dose. Shielding can be utilised to reduce heart exposure, but compromises the dose delivered to the breast tissue and, in a proportion of patients, to the tumour bed. Deep inspiration breath hold (DIBH) can be used as a technique to move the heart away from the treatment area and thus reduce heart dose. This study examines the efficacy of the Elekta Active Breathing Coordinator (ABC), a DIBH method, in reducing heart dose.Materials and methodsIn total, 12 patients receiving radiotherapy to the left breast were planned for treatment with both a free-breathing (FB) and an ABC scan. The dose volume histogram data for the plans was analysed with respect to heart V13, V5 Gy, mean heart dose and ipsilateral lung V18 Gy. Tumour bed D98%, threshold lung volume in breath hold (BH) and the maximum BH time for each patient was also measured. Patients then received their radiotherapy treatment using the ABC plan and the systematic error in the craniocaudal, lateral and vertical axes was assessed using orthogonal imaging.ResultsThe median heart V13 Gy for FB and DIBH patients was 3% (range, 0·85–11·28) and 0% (range, 0–1·56), respectively, with a mean heart dose of 2·62 Gy (range, 1·21–4·93) in FB and 1·51 Gy (range, 1·17–2·22) in ABC. The median lung V18 Gy was 8·7% (3·08–14·87) in FB plans and 9% (4·88–12·82) in ABC plans. The mean systematic set-up errors in all three planes were within the departmental set-up tolerance of 5 mm for both techniques. Median FB tumour bed D98% was 97·4% (92·8–99·5) and 97·5% (97·3–98·5) for ABC.ConclusionABC represents a good method of reducing radiation dose to the heart while not compromising on dose to the tumour bed, and it has a clear advantage over FB radiotherapy in reducing the risk of cardiac toxicity. It is tolerated well by patients and does not produce any difficulties in patient positioning.
Collapse
|
50
|
Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med Phys 2017; 44:2595-2612. [PMID: 28317123 DOI: 10.1002/mp.12227] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
The efficacy of stereotactic body radiotherapy (SBRT) has been well demonstrated. However, it presents unique challenges for accurate planning and delivery especially in the lungs and upper abdomen where respiratory motion can be significantly confounding accurate targeting and avoidance of normal tissues. In this paper, we review the current literature on SBRT for lung and upper abdominal tumors with particular emphasis on addressing respiratory motion and its affects. We provide recommendations on strategies to manage motion for different, patient-specific situations. Some of the recommendations will potentially be adopted to guide clinical trial protocols.
Collapse
Affiliation(s)
- Edward D Brandner
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Tawfik G Giaddui
- Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ying Xiao
- Imaging and Radiation Oncology Core (IROC), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| |
Collapse
|