Kathpalia H, Juvekar S, Mohanraj K, Apsingekar M, Shidhaye S. Investigation of pre-clinical pharmacokinetic parameters of atovaquone nanosuspension prepared using a pH-based precipitation method and its pharmacodynamic properties in a novel artemisinin combination.
J Glob Antimicrob Resist 2020;
22:248-256. [PMID:
32119990 DOI:
10.1016/j.jgar.2020.02.018]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES
Recently, a growing resistance to antimalarial drugs such as chloroquine, sulfadoxine-pyrimethamine, artemisinin derivatives and mefloquine has been observed. The pharmacokinetic limitation of the current therapy and multi-drug resistance has resulted in an urgent need to study the new antimalarial combinations with existing drugs. This study investigated the activity of a novel triple combination of atovaquone (nanosized)-proguanil-artesunate as an alternative artemisinin combination therapy. Atovaquone in this combination was formulated as a freeze-dried nanosuspension and its pharmacokinetic parameters were also evaluated.
METHODS
The suppressive and curative effect of atovaquone nanosuspension, proguanil, and artesunate were studied in a murine model. The in vivo pharmacokinetics of the newly developed atovaquone nanosuspension with particle size less than 200 nm was investigated.
RESULTS
Prophylactic efficacy of atovaquone nanosuspension alone at 1/80th the therapeutic dose was proven. In the curative test, atovaquone nanosuspension and proguanil at 1/10th the therapeutic dose was the minimum effective dose that resulted in complete cure of parasitaemia. As a triple combination, atovaquone nanosuspension in combination with proguanil at 1/80th the therapeutic dose of each and 1/5th the therapeutic dose of artesunate resulted in a complete cure. The in vivo pharmacokinetics of the nanosuspension showed a significant (three times) reduction in Tmax value and the area under the curve of the nanosuspension was 1.9 times greater as compared with the plain suspension.
CONCLUSIONS
The potential of the synergistic combination of atovaquone nanosuspension-proguanil-artesunate in curing the multi-drug resistant malarial infection at reduced doses of all three drugs could be a solution to pill burden observed with the current therapy.
Collapse