1
|
Hinnekens P, Fayad N, Gillis A, Mahillon J. Conjugation across Bacillus cereus and kin: A review. Front Microbiol 2022; 13:1034440. [PMID: 36406448 PMCID: PMC9673590 DOI: 10.3389/fmicb.2022.1034440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- *Correspondence: Jacques Mahillon,
| |
Collapse
|
2
|
Diversity and enzymatic potentialities of Bacillus sp. strains isolated from a polluted freshwater ecosystem in Cuba. World J Microbiol Biotechnol 2018; 34:28. [PMID: 29350293 DOI: 10.1007/s11274-018-2411-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.
Collapse
|
3
|
Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-Like Pigment Synthesis by Soil Bacillus weihenstephanensis Isolates from Northeastern Poland. PLoS One 2015; 10:e0125428. [PMID: 25909751 PMCID: PMC4409349 DOI: 10.1371/journal.pone.0125428] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022] Open
Abstract
Although melanin is known for protecting living organisms from harmful physical and chemical factors, its synthesis is rarely observed among endospore-forming Bacillus cereus sensu lato. Here, for the first time, we reported that psychrotolerant Bacillus weihenstephanensis from Northeastern Poland can produce melanin-like pigment. We assessed physicochemical properties of the pigment and the mechanism of its synthesis in relation to B. weihenstephanensis genotypic and phenotypic characteristics. Electron paramagnetic resonance (EPR) spectroscopy displayed a stable free radical signal of the pigment from environmental isolates which are consistent with the commercial melanin. Fourier transform infrared spectroscopy (FT-IR) and physicochemical tests indicated the phenolic character of the pigment. Several biochemical tests showed that melanin-like pigment synthesis by B. weihenstephanensis was associated with laccase activity. The presence of the gene encoding laccase was confirmed by the next generation whole genome sequencing of one B. weihenstephanensis strain. Biochemical (API 20E and 50CHB tests) and genetic (Multi-locus Sequence Typing, 16S rRNA sequencing, and Pulsed-Field Gel Electrophoresis) characterization of the isolates revealed their close relation to the psychrotrophic B. weihenstephanensis DSMZ 11821 reference strain. The ability to synthesize melanin-like pigment by soil B. weihenstephanensis isolates and their psychrotrophic character seemed to be a local adaptation to a specific niche. Detailed genetic and biochemical analyses of melanin-positive environmental B. weihenstephanensis strains shed some light on the evolution and ecological adaptation of these bacteria. Moreover, our study raised new biotechnological possibilities for the use of water-soluble melanin-like pigment naturally produced by B. weihenstephanensis as an alternative to commercial non-soluble pigment.
Collapse
Affiliation(s)
- Justyna M. Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Monika Zambrzycka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Beata Kalska-Szostko
- Department of Physicochemical Analysis, Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
- * E-mail:
| |
Collapse
|
4
|
Kaminska PS, Fiedoruk K, Jankowska D, Mahillon J, Nowosad K, Drewicka E, Zambrzycka M, Swiecicka I. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates. Electrophoresis 2015; 36:1051-4. [PMID: 25639850 DOI: 10.1002/elps.201400552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 11/08/2022]
Abstract
Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli.
Collapse
|
5
|
The correlation of the presence and expression levels of cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains. Toxins (Basel) 2014; 6:2453-70. [PMID: 25153253 PMCID: PMC4147593 DOI: 10.3390/toxins6082453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/21/2022] Open
Abstract
The use of Bacillusthuringiensis (Bt) strains with high insecticidal activity is essential for the preparation of bioinsecticide. In this study, for 60 Bt strains isolated in Taiwan, their genotypes and the correlation of some cry genes as well as the expression levels of cry1 genes, with their insecticidal activities against Plutella xylostella, were investigated. Pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) results revealed that the genotypes of these Bt strains are highly diversified. Also, a considerable number of the Bt strains isolated in Taiwan were found to have high insecticidal activities. Since strains that showed individual combined patterns of PFGE and RAPD exhibited distinct insecticidal activities against P. xylostella, thus, these genotypes may be useful for the identification of the new Bt strains and those which have been used in bioinsecticides. In addition, although the presence of cry2Aa1 may have a greater effect on the insecticidal activity of Bt strains in bioassay than other cry genes, only high expression level of cry1 genes plays a key role to determine the insecticidal activity of Bt strains. In conclusion, both RAPD and PFGE are effective in the differentiation of Bt strains. The presence of cry2Aa1 and, especially, the expression level of cry1 genes are useful for the prediction of the insecticidal activities of Bt strains against P. xylostella.
Collapse
|
6
|
Castiaux V, N'guessan E, Swiecicka I, Delbrassinne L, Dierick K, Mahillon J. Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates of Bacillus cereus and Bacillus weihenstephanensis. FEMS Microbiol Lett 2014; 353:124-31. [PMID: 24627989 DOI: 10.1111/1574-6968.12423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
Bacillus cereus is an important foodborne pathogen causing diarrhoea, emesis and in, rare cases, lethal poisonings. The emetic syndrome is caused by cereulide, a heat-stable toxin. Originally considered as a rather homogenous group, the emetic strains have since been shown to display some diversity, including the existence of two clusters of mesophilic B. cereus and psychrotolerant B. weihenstephanensis. Using pulsed-field gel electrophoresis (PFGE) analysis, this research aimed to better understand the diversity and spatio-temporal occurrence of emetic strains originating from environmental or food niches vs. those isolated from foodborne cases. The diversity was evaluated using a set of 52 B. cereus and B. weihenstephanensis strains isolated between 2000 and 2011 in ten countries. PFGE analysis could discriminate 17 distinct profiles (pulsotypes). The most striking observations were as follows: (1) more than one emetic pulsotype can be observed in a single outbreak; (2) the number of distinct isolates involved in emetic intoxications is limited, and these potentially clonal strains frequently occurred in successive and independent food poisoning cases; (3) isolates from different countries displayed identical profiles; and (4) the cereulide-producing psychrotolerant B. weihenstephanensis were, so far, only isolated from environmental niches.
Collapse
Affiliation(s)
- Virginie Castiaux
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, Lukaszuk E, Mahillon J. Diversity of thermal ecotypes and potential pathotypes ofBacillus thuringiensissoil isolates. FEMS Microbiol Ecol 2013; 85:262-72. [DOI: 10.1111/1574-6941.12116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/10/2013] [Accepted: 03/17/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology; University of Bialystok; Bialystok; Poland
| | | | | | | | - Emilia Murawska
- Department of Microbiology; University of Bialystok; Bialystok; Poland
| | | | - Edyta Lukaszuk
- Department of Plant Physiology; University of Bialystok; Bialystok; Poland
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| |
Collapse
|
8
|
Germination and proliferation of emetic Bacillus cereus sensu lato strains in milk. Folia Microbiol (Praha) 2013; 58:529-35. [DOI: 10.1007/s12223-013-0237-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
9
|
Sauka DH, Basile JI, Benintende G. Evidence of Bacillus thuringiensis intra-serovar diversity revealed by Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR genomic fingerprinting. J Mol Microbiol Biotechnol 2012; 21:184-90. [PMID: 22286045 DOI: 10.1159/000335532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus thuringiensis is classified into serovars on the basis of H-flagellar antigens. Several alternative typing methods have been described. Among them, a B. cereus group-specific repetitive extragenic palindromic (Rep)-PCR fingerprinting technique was shown to be discriminative and able to identify B. thuringiensis serovars. The aim of this study was to investigate the genomic diversity and relationship among B. thuringiensis strains collected from different Argentinean ecosystems. Thirty-seven B. thuringiensis reference strains and 131 Argentinean isolates were analyzed using a B. cereus group-specific Rep-PCR. Fourteen different patterns were identified among the Argentinean isolates. Eight could not be associated to any pattern obtained from a reference strain. The pattern identical to the serovar kurstaki HD-1 strain was the most frequently identified in 68 native isolates. The profiles allowed tracing a single dendrogram with two groups and eight main lineages. Some strains showed distinctive patterns despite belonging to the same serovar. An intraspecific diversity resulted from this analysis that was highlighted by this technique since strains from a given serovar showed distinct profiles. This study may help to establish a system of B. thuringiensis classification with a higher discrimination level than established by the H antigen serotyping.
Collapse
Affiliation(s)
- Diego H Sauka
- Insumos Bacterianos, Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria, Castelar, Argentina.
| | | | | |
Collapse
|
10
|
Sudden death of a young adult associated with Bacillus cereus food poisoning. J Clin Microbiol 2011; 49:4379-81. [PMID: 22012017 DOI: 10.1128/jcm.05129-11] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lethal intoxication case, which occurred in Brussels, Belgium, is described. A 20-year-old man died following the ingestion of pasta contaminated with Bacillus cereus. Emetic strains of B. cereus were isolated, and high levels of cereulide (14.8 μg/g) were found in the spaghetti meal.
Collapse
|
11
|
Characterization of Tunisian Bacillus thuringiensis strains with abundance of kurstaki subspecies harbouring insecticidal activities against the lepidopteran insect Ephestia kuehniella. Curr Microbiol 2010; 61:541-8. [PMID: 20424844 DOI: 10.1007/s00284-010-9650-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
The study of 257 crystal-producing Bacillus thuringiensis isolates from bioinsecticide free soil samples collected from different sites in Tunisia, was performed by PCR amplification, using six primer pairs specific for cry1, cry2, cry3, cry4, and vip3A genes, by the investigation of strain plasmid pattern, crystal morphology and delta-endotoxin content and by the assessment of insecticidal activities against the lepidopteran insect Ephestia kuehniella. Based on plasmid pattern study, 11 representative strains of the different classes were subjected to morphological and molecular analyses. The comparison of the PFGE fingerprints confirmed the heterogeneity of these strains. B. thuringiensis kurstaki strains, harbouring at the same time the genes cry1A, cry2, cry1Ia, and vip3A, were the most abundant (65.4%). 33.34% of the new isolates showed particular delta-endotoxin profiles but no PCR products with the used primer sets. B. thuringiensis israelensis was shown to be also very rare among the Tunisian B. thuringiensis isolates diversity. These findings could have considerable impacts for the set up of new pest control biological agents.
Collapse
|
12
|
Bartoszewicz M, Hansen B, Swiecicka I. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol 2008; 25:588-96. [DOI: 10.1016/j.fm.2008.02.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 11/26/2022]
|
13
|
Cherif A, Ettoumi B, Raddadi N, Daffonchio D, Boudabous A. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol 2007; 53:343-50. [PMID: 17538643 DOI: 10.1139/w06-129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.
Collapse
Affiliation(s)
- Ameur Cherif
- Laboratoire miroorganismes et biomolécules actives, Faculté des sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
14
|
Esterase electrophoretic polymorphism ofBacillus thuringiensis andBacillus cereus reference strains. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Swiecicka I, Mahillon J. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 2006; 56:132-40. [PMID: 16542411 DOI: 10.1111/j.1574-6941.2006.00063.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although Bacillus cereus sensu lato are important both from an ecological and an economical point of view, little is known about their population structure, ecology, and relationships with other organisms. In the present work, the genotypic similarity of arthropod-borne B. cereus s.l. isolates, and their symbiotic relationship with the host are assessed. Bacilli of this group were recovered from the digestive tracts of sow bugs (Porcellio scaber) collected in three closely located sites. Their genotypic diversity was investigated using pulse-field gel electrophoresis (PFGE) following the whole-genome DNA digestions with NotI and AscI, and PCR amplification of virulence genes. The majority of the sow-bug Bacillus cereus sensu stricto isolates originating from the same but also from different sites displayed identical PFGE patterns, virulence gene content and enterotoxicity, indicating strong genetic and genomic relationships. The sow-bug Bacillus mycoides/Bacillus pseudomycoides strains displayed a higher diversity. The isopod-B. cereus s.l. relationship was also evaluated using antibiotic-resistant derivatives of B. cereus s.s., B. mycoides/B. pseudomycoides and Bacillus thuringiensis reintroduced into sow bugs. Both spores and vegetative cells of B. cereus s.l. were recovered from sow bugs over a 30-day period, strongly suggesting that these bacteria are natural residents of terrestrial isopods.
Collapse
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland.
| | | |
Collapse
|
16
|
Application of RAPD technique to study polymorphism among Bacillus thuringiensis isolates from Jordan. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9177-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J. Fatal family outbreak of Bacillus cereus-associated food poisoning. J Clin Microbiol 2005; 43:4277-9. [PMID: 16082000 PMCID: PMC1233987 DOI: 10.1128/jcm.43.8.4277-4279.2005] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus is a well-known cause of food-borne illness, but infection with this organism is not commonly reported because of its usually mild symptoms. A fatal case due to liver failure after the consumption of pasta salad is described and demonstrates the possible severity of the emetic syndrome.
Collapse
Affiliation(s)
- Katelijne Dierick
- Institute of Public Health, Food Section, 14 Juliette Wijtsman Str., B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-3633-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Barker M, Thakker B, Priest FG. Multilocus sequence typing reveals thatBacillus cereusstrains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Lett 2005; 245:179-84. [PMID: 15796996 DOI: 10.1016/j.femsle.2005.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022] Open
Abstract
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.
Collapse
Affiliation(s)
- Margaret Barker
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | | | | |
Collapse
|
20
|
Swiecicka I, Mahillon J. The clonal structure of Bacillus thuringiensis isolates from north-east Poland does not correlate with their cry gene diversity. Environ Microbiol 2005; 7:34-9. [PMID: 15643933 DOI: 10.1111/j.1462-2920.2004.00662.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genetic relationship among 103 natural Bacillus thuringiensis isolates was investigated on the basis of polymerase chain reaction amplification of their specific crystal (cry) protein type genes and chromosomal DNA profiling by pulsed-field gel electrophoresis (PFGE). The strains were recovered from the intestines of small wild rodents and insectivores from the Biebrza National Park and the Lomza Landscape Park of the Narew River Valley in north-east Poland. The percentage of B. thuringiensis strains harbouring genes coding for toxins active against Lepidoptera (cry1, cry2, cry9) was very high (64%) compared with that of Diptera-specific strains (cry4, 14%). No strain with cry genes coding for proteins directed against coleopteran larvae and nematodes was found. After digestion with NotI and AscI, only nine PFGE pulsotypes were observed among all isolates, indicating a clonal structure for the B. thuringiensis population from NE Poland. Interestingly, no correlation was observed between the DNA pulsotype strains and their crystal gene content and diversity. These results therefore emphasize the importance of cry gene horizontal transfer occurring among natural isolates of B. thuringiensis.
Collapse
Affiliation(s)
- Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Białystok, 15-950 Białystok, Swierkowa 20B, Poland.
| | | |
Collapse
|
21
|
Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ. Population structure and evolution of the Bacillus cereus group. J Bacteriol 2004; 186:7959-70. [PMID: 15547268 PMCID: PMC529064 DOI: 10.1128/jb.186.23.7959-7970.2004] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Representative strains of the Bacillus cereus group of bacteria, including Bacillus anthracis (11 isolates), B. cereus (38 isolates), Bacillus mycoides (1 isolate), Bacillus thuringiensis (53 isolates from 17 serovars), and Bacillus weihenstephanensis (2 isolates) were assigned to 59 sequence types (STs) derived from the nucleotide sequences of seven alleles, glpF, gmk, ilvD, pta, pur, pycA, and tpi. Comparisons of the maximum likelihood (ML) tree of the concatenated sequences with individual gene trees showed more congruence than expected by chance, indicating a generally clonal structure to the population. The STs followed two major lines of descent. Clade 1 comprised B. anthracis strains, numerous B. cereus strains, and rare B. thuringiensis strains, while clade 2 included the majority of the B. thuringiensis strains together with some B. cereus strains. Other species were allocated to a third, heterogeneous clade. The ML trees and split decomposition analysis were used to assign STs to eight lineages within clades 1 and 2. These lineages were defined by bootstrap analysis and by a preponderance of fixed differences over shared polymorphisms among the STs. Lineages were named with reference to existing designations: Anthracis, Cereus I, Cereus II, Cereus III, Kurstaki, Sotto, Thuringiensis, and Tolworthi. Strains from some B. thuringiensis serovars were wholly or largely assigned to a single ST, for example, serovar aizawai isolates were assigned to ST-15, serovar kenyae isolates were assigned to ST-13, and serovar tolworthi isolates were assigned to ST-23, while other serovars, such as serovar canadensis, were genetically heterogeneous. We suggest a revision of the nomenclature in which the lineage and clone are recognized through name and ST designations in accordance with the clonal structure of the population.
Collapse
Affiliation(s)
- Fergus G Priest
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| | | | | | | | | |
Collapse
|
22
|
Yavuz E, Gunes H, Harsa S, Bulut C, Fazil yenidunya A. Optimization of pulsed field gel electrophoresis (PFGE) conditions for thermophilic bacilli. World J Microbiol Biotechnol 2004. [DOI: 10.1007/s11274-004-1004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|