1
|
Guo HH, Sun Y, Zhang XL, Jiang XY, Zou SM. Identification of duplicated Cited3 genes and their responses to hypoxic stress in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1141-1152. [PMID: 30963483 DOI: 10.1007/s10695-019-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The CITED3 protein is a non-DNA-binding transcriptional co-regulator involved in the regulation of various transcriptional responses against hypoxia stress. Here, we characterized two paralogs Cited3 genes (Cited3a and Cited3b) from blunt snout bream (Megalobrama amblycephala), which is a hypoxia-sensitive species. Both genes have an open reading frame of 756 and 723 bp; encoded a protein of 251 amino acid and 240 amino acid, respectively; and they shared a sequence identity of 67%. In adult fish, both Cited3a and Cited3b mRNAs were highly expressed in kidney tissues. In contrast, they were detected in the skin, muscle, and gonad at extraordinarily low levels. During embryogenesis, both Cited3a and Cited3b mRNAs were maternally deposited in eggs and fluctuated from the zygote to the 44-hpf (hours post-fertilization) larvae. Whole-mount in situ hybridization demonstrated that both Cited3a and Cited3b mRNAs were transcribed in the brain, gut, and tailbud at 12 hpf, and at the brain and gut at 24 hpf, and at the brain at 36 hpf embryos. Hypoxic treatment led to upregulated expression of the Cited3 genes during embryogenesis. Under hypoxia, both Cited3a and Cited3b genes in the kidney and brain and Cited3a genes in the liver were significantly upregulated. These results suggest that hypoxia was associated with increases in mRNA levels for both Cited3a (kidney, brain, liver) and Cited3b (kidney and liver).
Collapse
Affiliation(s)
- Hong-Hong Guo
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuan Sun
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xue-Li Zhang
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xia-Yun Jiang
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Taubert S, Hansen M, Van Gilst MR, Cooper SB, Yamamoto KR. The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS Genet 2008; 4:e1000021. [PMID: 18454197 PMCID: PMC2265483 DOI: 10.1371/journal.pgen.1000021] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/10/2008] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, RNA polymerase II (PolII) dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to PolII-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds. All organisms adapt their physiology to external input, such as altered food availability or toxic challenges. Many of these responses are driven by changes in gene transcription. In general, sequence specific DNA-binding regulatory factors are considered the specificity determinants of the transcriptional output. Here, we show that, in the roundworm Caenorhabditis elegans, one subunit of a >20 subunit, evolutionarily conserved, non-DNA binding co-factor termed Mediator, specifies a portion of the metabolic responses to a mixture of ingested material. This protein, MDT-15, is required for appropriate expression of genes that protect worms from the effects of toxic compounds and heavy metals. Our previous findings showed that the same protein also cooperates with other regulators to coordinate lipid metabolism. We suggest that MDT-15 may “route” transcriptional responses appropriate to the ingested material. This physiological scope appears broader and more sophisticated than that of any individual regulatory factor, thus coordinating systemic metabolic adaptation with ingestion. Given the evolutionary conservation of MDT-15 and the Mediator, a similar regulatory pathway may ensure health and longevity in mammals.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Malene Hansen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Marc R. Van Gilst
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, Washington, United States of America
| | - Samantha B. Cooper
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program of Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Ishikawa H, Tachikawa H, Miura Y, Takahashi N. TRIM11 binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105) through the ubiquitin-proteasome system. FEBS Lett 2006; 580:4784-92. [PMID: 16904669 DOI: 10.1016/j.febslet.2006.07.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/03/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
TRIM11 is a member of the tripartite-motif-containing protein family and is known to destabilize humanin, an inhibitor of Alzheimer-like neuronal insults. In this study, we demonstrate that TRIM11 interacts with activator-recruited cofactor 105-kDa component (ARC105) that mediates chromatin-directed transcription activation and is a key regulatory factor for transforming growth factor beta (TGFbeta) signaling. Co-expression of TRIM11 increased ARC105 degradation but a proteasome inhibitor suppressed this. Co-expression of TRIM11 and ARC105 also increased ubiquitination of ARC105. In addition, TRIM11 suppressed ARC105-mediated transcriptional activation induced with TGFbeta in a reporter assay. These results suggest that TRIM11, with the ubiquitin-proteasome pathway, regulates ARC105 function in TGFbeta signaling.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bioengineering, Applied Life Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
4
|
Ng PKS, Wu RSS, Zhang ZP, Mok HOL, Randall DJ, Kong RYC. Molecular cloning and characterization of a hypoxia-responsive CITED3 cDNA from grass carp. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:163-72. [PMID: 14529742 DOI: 10.1016/s1096-4959(03)00224-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have isolated a 1586-bp full-length CITED3 cDNA from grass carp which specifies for a cAMP-responsive element-binding protein/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich C-terminal domain protein. The cDNA, designated as gcCITED3, has an open reading frame of 762 bp and encodes a protein of 253 amino acids with a predicted molecular mass of 28.3 kDa and pI of 6.4. Pairwise comparison showed that gcCITED3 shares high sequence identity with the CITED3 of zebrafish (94%), chicken (72%) and Xenopus (59%). Northern blot analysis indicated that gcCITED3 is most highly expressed and responsive to hypoxia in the carp kidney. Hypoxic induction was also observed in heart, albeit at a lower level. This is the first report on the isolation of a hypoxia-responsive CITED3 gene from fish.
Collapse
Affiliation(s)
- P K S Ng
- Department of Biology and Chemistry and Centre for Coastal Pollution and Conservation, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
5
|
Kato Y, Habas R, Katsuyama Y, Näär AM, He X. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 2002; 418:641-6. [PMID: 12167862 DOI: 10.1038/nature00969] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transforming growth factor beta (TGF beta) family of cytokines, including Nodal, Activin and bone morphogenetic protein (BMP), have essential roles in development and tumorigenesis. TGF beta molecules activate the Smad family of signal transducers, which form complexes with specific DNA-binding proteins to regulate gene expression. Two discrete Smad-dependent signalling pathways have been identified: TGF beta, Activin and Nodal signal via the Smad2 (or Smad3)-Smad4 complex, whereas BMP signals via the Smad1-Smad4 complex. How distinct Smad complexes regulate specific gene expression is not fully understood. Here we show that ARC105, a component of the activator-recruited co-factor (ARC) complex or the metazoan Mediator complex, is essential for TGF beta/Activin/Nodal/Smad2/3 signal transduction. Expression of ARC105 stimulates Activin/Nodal/Smad2 signalling in Xenopus laevis embryos, inducing axis duplication and mesendoderm differentiation, and enhances TGF beta response in human cells. Depletion of ARC105 inhibits TGF beta/Activin/Nodal/Smad2/3 signalling and Xenopus axis formation, but not BMP/Smad1 signalling. ARC105 protein binds to Smad2/3-Smad4 in response to TGF beta and is recruited to Activin/Nodal-responsive promoters in chromatin in a Smad2-dependent fashion. Thus ARC105 is a specific and key ARC/Mediator component linking TGF beta/Activin/Nodal/Smad2/3 signalling to transcriptional activation.
Collapse
Affiliation(s)
- Yoichi Kato
- Division of Neuroscience, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
The last two decades have witnessed a tremendous expansion in our knowledge of the mechanisms employed by eukaryotic cells to control gene activity. A critical insight to transcriptional control mechanisms was provided by the discovery of coactivators, a diverse array of cellular factors that connect sequence-specific DNA binding activators to the general transcriptional machinery, or that help activators and the transcriptional apparatus to navigate through the constraints of chromatin. A number of coactivators have been isolated as large multifunctional complexes, and biochemical, genetic, molecular, and cellular strategies have all contributed to uncovering many of their components, activities, and modes of action. Coactivator functions can be broadly divide into two classes: (a) adaptors that direct activator recruitment of the transcriptional apparatus, (b) chromatin-remodeling or -modifying enzymes. Strikingly, several distinct coactivator complexes nonetheless share many subunits and appear to be assembled in a modular fashion. Such structural and functional modularity could provide the cell with building blocks from which to construct a versatile array of coactivator complexes according to its needs. The extent of functional interplay between these different activities in gene-specific transcriptional regulation is only now becoming apparent, and will remain an active area of research for years to come.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
7
|
Mittler G, Kremmer E, Timmers HT, Meisterernst M. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep 2001; 2:808-13. [PMID: 11559591 PMCID: PMC1084041 DOI: 10.1093/embo-reports/kve186] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human Mediator complexes have been described as important bridging factors that enhance the effect of activators in purified systems and in chromatin. Here we report a novel basal function of a human Mediator complex. A monoclonal antibody was generated that depleted the majority of Mediator components from crude cell extracts. The removal of human Mediator abolished transcription by RNA polymerase II. This was observed on all genes tested, on TATA-containing and TATA-less promoters, both in the presence and absence of activators. To identify the relevant complex a combined biochemical and immunopurification protocol was applied. Two variants termed Mediator and basal Mediator were functionally and structurally distinguished. Basal Mediator function relies on additional constraints, which is reflected in the observation that it is essential in crude but not in purified systems. We conclude that basal Mediator is a novel general transcription factor of RNA polymerase II.
Collapse
Affiliation(s)
- G Mittler
- Institute of Molecular Immunology, Department for Gene Expression, GSF-National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 München, Germany
| | | | | | | |
Collapse
|
8
|
Berti L, Mittler G, Przemeck GK, Stelzer G, Günzler B, Amati F, Conti E, Dallapiccola B, Hrabé de Angelis M, Novelli G, Meisterernst M. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. Genomics 2001; 74:320-32. [PMID: 11414760 DOI: 10.1006/geno.2001.6566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemizygous deletions on chromosome 22q11.2 result in developmental disorders referred to as DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS). We report the isolation of a novel gene, PCQAP (PC2 glutamine/Q-rich-associated protein), that maps to the DiGeorge typically deleted region and encodes a protein identified as a subunit of the large multiprotein complex PC2. PC2 belongs to the family of the human Mediator complexes, which exhibit coactivator function in RNA polymerase II transcription. Furthermore, we cloned the homologous mouse Pcqap cDNA. There is 83% amino acid identity between the human and the mouse predicted protein sequences, with 96% similarity at the amino- and carboxy-terminal ends. To assess the potential involvement of PCQAP in DGS/VCFS, its developmental expression pattern was analyzed. In situ hybridization of mouse embryos at different developmental stages revealed that Pcqap is ubiquitously expressed. However, higher expression was detected in the frontonasal region, pharyngeal arches, and limb buds. Moreover, analysis of subjects carrying a typical 22q11 deletion revealed that the human PCQAP gene was deleted in all patients. Many of the structures affected in DGS/VCFS evolve from Pcqap-expressing cells. Together with the observed haploinsufficiency of PCQAP in DGS/VCFS patients, this finding is consistent with a possible role for this novel Mediator subunit in the development of some of the structures affected in DGS/VCFS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 22/genetics
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DiGeorge Syndrome/genetics
- Embryo, Mammalian/metabolism
- Exons
- Female
- Gene Expression
- Genes/genetics
- Glutamine/genetics
- HeLa Cells
- Humans
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Introns
- Jurkat Cells
- Male
- Mediator Complex
- Mice
- Molecular Sequence Data
- Mutation
- Polymorphism, Single Nucleotide
- Protein Subunits
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Berti
- Department of Protein Biochemistry, Institute of Molecular Immunology-GSF, Munich, 81377, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|