1
|
Yamaguchi M, Cotterill S. Association of Mutations in Replicative DNA Polymerase Genes with Human Disease: Possible Application of Drosophila Models for Studies. Int J Mol Sci 2023; 24:ijms24098078. [PMID: 37175782 PMCID: PMC10178534 DOI: 10.3390/ijms24098078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase. Over the last decade, extensive genome-wide association studies and expression profiling studies of the replicative DNA polymerase genes in human patients have revealed a link between the replicative DNA polymerase genes and various human diseases and disorders including cancer, intellectual disability, microcephalic primordial dwarfism and immunodeficiency. These studies suggest the importance of dissecting the mechanisms involved in the functioning of replicative DNA polymerases in understanding and treating a range of human diseases. Previous studies in Drosophila have established this organism as a useful model to understand a variety of human diseases. Here, we review the studies on Drosophila that explored the link between DNA polymerases and human disease. First, we summarize the recent studies linking replicative DNA polymerases to various human diseases and disorders. We then review studies on replicative DNA polymerases in Drosophila. Finally, we suggest the possible use of Drosophila models to study human diseases and disorders associated with replicative DNA polymerases.
Collapse
Affiliation(s)
| | - Sue Cotterill
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
2
|
Marygold SJ, Attrill H, Speretta E, Warner K, Magrane M, Berloco M, Cotterill S, McVey M, Rong Y, Yamaguchi M. The DNA polymerases of Drosophila melanogaster. Fly (Austin) 2020; 14:49-61. [PMID: 31933406 PMCID: PMC7714529 DOI: 10.1080/19336934.2019.1710076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.
Collapse
Affiliation(s)
- Steven J. Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Helen Attrill
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elena Speretta
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Kate Warner
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Michele Magrane
- UniProt, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridgeshire, UK
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University London, London, UK
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA
| | - Yikang Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
3
|
Suyari O, Kawai M, Ida H, Yoshida H, Sakaguchi K, Yamaguchi M. Differential requirement for the N-terminal catalytic domain of the DNA polymerase ε p255 subunit in the mitotic cell cycle and the endocycle. Gene 2012; 495:104-14. [PMID: 22245183 DOI: 10.1016/j.gene.2011.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
Abstract
In Drosophila, the 255kDa catalytic subunit (dpolεp255) and the 58kDa subunit of DNA polymerase ε (dpolεp58) have been identified. The N-terminus of dpolεp255 carries well-conserved six DNA polymerase subdomains and five 3'→5' exonuclease motifs as observed with Polε in other species. We here examined roles of dpolεp255 during Drosophila development using transgenic fly lines expressing double stranded RNA (dsRNA). Expression of dpolεp255 dsRNA in eye discs induced a small eye phenotype and inhibited DNA synthesis, indicating a role in the G1-S transition and/or S-phase progression of the mitotic cycle. Similarly, expression of dpolεp255 dsRNA in the salivary glands resulted in small size and endoreplication defects, demonstrating a critical role in endocycle progression. In the eye disc, defects induced by knockdown of dpolεp255 were rescued by overexpression of the C-terminal region of dpolεp255, indicating that the function of this non-catalytic domain is conserved between yeast and Drosophila. However, this was not the case for the salivary gland, suggesting that the catalytic N-terminal region is crucial for endoreplication and its defect cannot be complemented by other DNA polymerases. In addition, several genetic interactants with dpolεp255 including genes related to DNA replication such as RFC, DNA primase, DNA polη, Mcm10 and Psf2 and chromatin remodeling such as Iswi were also identified.
Collapse
Affiliation(s)
- Osamu Suyari
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Verma A, Sengupta S, Lakhotia SC. DNApol-ϵ gene is indispensable for the survival and growth of Drosophila melanogaster. Genesis 2011; 50:86-101. [PMID: 21898761 DOI: 10.1002/dvg.20791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/08/2022]
Abstract
Based on deletion and complementation mapping and DNA sequencing, a new recessive fully penetrant mutation (DNApol-ϵpl10R), causing prolonged larval life and larval/early pupal lethality, is identified as the first mutant allele of the DNApol-ϵ (CG6768) gene of Drosophila melanogaster. A same-sense base pair substitution in exon 1 of the DNApol-ϵ gene is associated with retention of the first intron and significant reduction in DNApol-ϵ transcripts in DNApol-ϵpl10R homozygotes. Homozygous mutant larvae show small imaginal discs with fewer cells and reduced polyteny in salivary glands, presumably because of the compromised DNA polymerase function following exhaustion of the maternal contribution. Extremely small and rare DNApol-ϵpl10R homozygous somatic clones in DNApol-ϵpl10R/+imaginal discs confirm their poor mitotic activity. The DNApol-ϵpl10R homozygotes, like those expressing DNApol-ϵ-RNAi transgene, show high sensitivity to DNA damaging agents. The first mutant allele of the DNApol-ϵ gene will facilitate functional characterization of this enzyme in the genetically tractable Drosophila model.
Collapse
Affiliation(s)
- Akanksha Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
5
|
Petrov VM, Ratnayaka S, Karam JD. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J Mol Biol 2009; 395:457-74. [PMID: 19896487 DOI: 10.1016/j.jmb.2009.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/21/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry SL43, School of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
6
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
7
|
Oshige M, Takeuchi R, Ruike T, Ruike R, Kuroda K, Sakaguchi K. Subunit protein-affinity isolation of Drosophila DNA polymerase catalytic subunit. Protein Expr Purif 2005; 35:248-56. [PMID: 15135399 DOI: 10.1016/j.pep.2004.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 01/26/2004] [Indexed: 10/26/2022]
Abstract
gfLittle is known at present about the biochemical properties of very large-sized Drosophila DNA polymerases. In a previous study, we tried to purify Drosophila pol. catalytic subunit from embryos through seven column chromatographies and study its biochemical properties. However, we failed to characterize it precisely because an insufficient amount of the enzyme was generated. In this report, we describe direct purification from Drosophila embryos to near homogeneity using Drosophila DNA polymerase second subunit (Drosophila pol. 2) protein-conjugated affinity column chromatography and characterization of the enzyme in detail. To our knowledge this is the first demonstration of native DNA polymerase purification with activity using a subunit protein-affinity column. We observed new characteristics of Drosophila pol. catalytic subunit as follows: Drosophila pol. catalytic subunit synthesized DNA processively in the presence of both Mn(2+) and Mg(2+) ions, but Mn(2+) inhibited the 3'-5' proofreading activity, thereby decreasing the fidelity of DNA replication by 50%.
Collapse
Affiliation(s)
- Masahiko Oshige
- Frontier Research Center for Genome and Drug Research, Tokyo University of Science, Ymazaki 2641, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Takata KI, Ishikawa G, Hirose F, Sakaguchi K. Drosophila damage-specific DNA-binding protein 1 (D-DDB1) is controlled by the DRE/DREF system. Nucleic Acids Res 2002; 30:3795-808. [PMID: 12202765 PMCID: PMC137413 DOI: 10.1093/nar/gkf490] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We succeeded in cloning the gene, termed d-ddb1, for a Drosophila homolog of the p127 subunit of the human damage-specific DNA-binding protein, thought to recognize (6-4) photoproducts and related structures. In Drosophila, the gene product (D-DDB1) also appeared to play a role as a repair factor, d-ddb1 knockout Kc cells generated with a RNAi method being sensitive to UV. In addition, UV or methyl methanesulfonate treatment increased d-ddb1 transcripts. However, we found that the gene is controlled by the DRE/DREF system, which is generally responsible for activating the promoters of proliferation-related genes. Moreover, during Drosophila development, the transcription of d-ddb1 changed greatly, with the highest levels in unfertilized eggs, indicating that external injury to DNA is not essential to D-DDB1 function. Interestingly, as with UV irradiation-induced transfer of D-DDB1 to the nucleus from the cytoplasm, during spermatogenesis the protein transiently shifted from one cell compartment to the other. The results indicate that D-DDB1 not only contributes to the DNA repair system, but also has a role in cell proliferation and development.
Collapse
Affiliation(s)
- Kei-ichi Takata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | |
Collapse
|
9
|
Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, Yamamoto T, Hashimoto J, Sakaguchi K. A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Res 2002; 30:1585-92. [PMID: 11917019 PMCID: PMC101828 DOI: 10.1093/nar/30.7.1585] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel DNA polymerase, designated as OsPolI-like, has been identified from the higher plant, rice (Oryza sativa L. cv. Nipponbare). The OsPolI-like cDNA was 3765 bp in length, and the open reading frame encoded a predicted product of 977 amino acid residues with a molecular weight of 100 kDa. The OsPolI-like gene has been mapped to chromosome 8 and contains 12 exons and 11 introns. The encoded protein showed a high degree of sequence and structural homology to Escherichia coli pol I protein, but differed from DNA polymerase gamma and theta. The DNA polymerase domain of OsPolI-like showed DNA polymerase activity. Subcellular fractionation analysis suggested that the protein is localized in the plastid. Northern and western blotting, and in situ hybridization analyses demonstrated preferential expression of OsPolI-like in meristematic tissues such as shoot apical meristem, root apical meristem, leaf primordia and the marginal meristem. Interestingly, no expression was detected in mature leaves, although they have a high chloroplast content. These properties indicated that OsPolI-like is a novel plant DNA polymerase. The function of OsPolI-like is discussed in relation to plastid maturation.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|