1
|
Asali S, Raz A, Turki H, Mafakher L, Razmjou E, Solaymani-Mohammadi S. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development. INFECTION GENETICS AND EVOLUTION 2021; 89:104710. [PMID: 33421653 DOI: 10.1016/j.meegid.2021.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A → G at nucleotide position 77 (46.7%), whereas the least frequent was C → T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.
Collapse
Affiliation(s)
- Soheila Asali
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
2
|
Billman ZP, Kas A, Stone BC, Murphy SC. Defining rules of CD8(+) T cell expansion against pre-erythrocytic Plasmodium antigens in sporozoite-immunized mice. Malar J 2016; 15:238. [PMID: 27113469 PMCID: PMC4845300 DOI: 10.1186/s12936-016-1295-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole Plasmodium sporozoites serve as both experimental tools and potentially as deployable vaccines in the fight against malaria infection. Live sporozoites infect hepatocytes and induce a diverse repertoire of CD8(+) T cell responses, some of which are capable of killing Plasmodium-infected hepatocytes. Previous studies in Plasmodium yoelii-immunized BALB/c mice showed that some CD8(+) T cell responses expanded with repeated parasite exposure, whereas other responses did not. RESULTS Here, similar outcomes were observed using known Plasmodium berghei epitopes in C57BL/6 mice. With the exception of the response to PbTRAP, IFNγ-producing T cell responses to most studied antigens, such as PbGAP50, failed to re-expand in mice immunized with two doses of irradiated P. berghei sporozoites. In an effort to boost secondary CD8(+) T cell responses, heterologous cross-species immunizations were performed. Alignment of P. yoelii 17XNL and P. berghei ANKA proteins revealed that >60 % of the amino acids in syntenic orthologous proteins are continuously homologous in fragments ≥8-amino acids long, suggesting that cross-species immunization could potentially trigger responses to a large number of common Class I epitopes. Heterologous immunization resulted in a larger liver burden than homologous immunization. Amongst seven tested antigen-specific responses, only CSP- and TRAP-specific CD8(+) T cell responses were expanded by secondary homologous sporozoite immunization and only those to the L3 ribosomal protein and S20 could be re-expanded by heterologous immunization. In general, heterologous late-arresting, genetically attenuated sporozoites were better at secondarily expanding L3-specific responses than were irradiated sporozoites. GAP50 and several other antigens shared between P. berghei and P. yoelii induced a large number of IFNγ-positive T cells during primary immunization, yet these responses could not be re-expanded by either homologous or heterologous secondary immunization. CONCLUSIONS These studies highlight how responses to different sporozoite antigens can markedly differ in recall following repeated sporozoite vaccinations. Cross-species immunization broadens the secondary response to sporozoites and may represent a novel strategy for candidate antigen discovery.
Collapse
Affiliation(s)
- Zachary P Billman
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Arnold Kas
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Brad C Stone
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA. .,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Garamszegi LZ. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states. Int J Parasitol 2010; 41:205-12. [PMID: 20920506 DOI: 10.1016/j.ijpara.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, c/Americo Vespucio, s/n, 41092 Sevilla, Spain.
| |
Collapse
|
4
|
African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc Natl Acad Sci U S A 2010; 107:10561-6. [PMID: 20498054 DOI: 10.1073/pnas.1005435107] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated two mitochondrial genes (cytb and cox1), one plastid gene (tufA), and one nuclear gene (ldh) in blood samples from 12 chimpanzees and two gorillas from Cameroon and one lemur from Madagascar. One gorilla sample is related to Plasmodium falciparum, thus confirming the recently reported presence in gorillas of this parasite. The second gorilla sample is more similar to the recently defined Plasmodium gaboni than to the P. falciparum-Plasmodium reichenowi clade, but distinct from both. Two chimpanzee samples are P. falciparum. A third sample is P. reichenowi and two others are P. gaboni. The other chimpanzee samples are different from those in the ape clade: two are Plasmodium ovale, and one is Plasmodium malariae. That is, we have found three human Plasmodium parasites in chimpanzees. Four chimpanzee samples were mixed: one species was P. reichenowi; the other species was P. gaboni in three samples and P. ovale in the fourth sample. The lemur sample, provisionally named Plasmodium malagasi, is a sister lineage to the large cluster of primate parasites that does not include P. falciparum or ape parasites, suggesting that the falciparum + ape parasite cluster (Laverania clade) may have evolved from a parasite present in hosts not ancestral to the primates. If malignant malaria were eradicated from human populations, chimpanzees, in addition to gorillas, might serve as a reservoir for P. falciparum.
Collapse
|
5
|
Abstract
Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Côte d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.
Collapse
|
6
|
Hagner SC, Misof B, Maier WA, Kampen H. Bayesian analysis of new and old malaria parasite DNA sequence data demonstrates the need for more phylogenetic signal to clarify the descent of Plasmodium falciparum. Parasitol Res 2007; 101:493-503. [PMID: 17393186 DOI: 10.1007/s00436-007-0499-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/09/2007] [Indexed: 11/27/2022]
Abstract
Molecular systematic studies published during the last 15 years to clarify the phylogenetic relationships among the malaria parasites have led to two major hypotheses on the descent of Plasmodium falciparum: One supports an avian origin as a result of a relatively recent host switch, and another one favours the evolutionary development of P. falciparum together with its human host from primate ancestors. In this paper, we present phylogenetic analyses of three different Plasmodium genes, the nuclear 18 small sub-unit (SSU) ribosomal ribonucleic acid (rRNA), the mitochondrial cytochrome b (cyt b) and the plastid caseinolytic protease C (ClpC) gene, using numerous haemosporidian parasite DNA sequences obtained from the GenBank as well as several new sequences for major malaria parasites including the avian one Plasmodium cathemerium, which has never been considered in molecular phylogenetic analyses before. Most modern and sophisticated DNA substitution models based on Bayesian inference analysis were applied to estimate the cyt b and ClpC phylogenetic trees, whereas the 18 SSU rRNA gene was examined with regards to its secondary structure using PHASE software. Our results indicate that the data presently available are generally neither sufficient in number nor in information to solve the problem of the phylogenetic origin of P. falciparum.
Collapse
Affiliation(s)
- S C Hagner
- Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | |
Collapse
|
7
|
Polley SD, Weedall GD, Thomas AW, Golightly LM, Conway DJ. Orthologous gene sequences of merozoite surface protein 1 (MSP1) from Plasmodium reichenowi and P. gallinaceum confirm an ancient divergence of P. falciparum alleles. Mol Biochem Parasitol 2005; 142:25-31. [PMID: 15907558 DOI: 10.1016/j.molbiopara.2005.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/18/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
Merozoite surface protein 1 (MSP 1) of Plasmodium falciparum has a major allelic dimorphism in the majority of its sequence, the origin and significance of which is obscure. Here, the cloning and sequencing of the msp1 gene from P. reichenowi (a chimpanzee parasite that is the nearest relative of P. falciparum) and P. gallinaceum (a malaria parasite of birds) is reported. P. reichenowi msp1 is most closely related to one allelic type (K1) of P. falciparum. The other P. falciparum major allelic type (MAD20) is very divergent from these sequences, although not as divergent as msp1 of P. gallinaceum. Assuming a date of 6 million years ago (mya) for the divergence of the P. falciparum K1 and the P. reichenowi msp1 genes (on the basis of previous estimates for these parasite species as well as host divergence times), the most recent common ancestor of the dimorphic region of msp1 would date to approximately 27mya. Thus, the P. falciparum msp1 dimorphism is confirmed as one of the oldest polymorphisms known with the exception of self-incompatibility S genes in Solanaceae. In contrast with the major allelic dimorphism, the polymorphisms present in the relatively conserved C terminus of P. falciparum msp1 appear to have arisen since the divergence of the P. falciparum and P. reichenowi msp1 genes.
Collapse
Affiliation(s)
- Spencer D Polley
- London School of Hygiene and Tropical Medicine, Department of Infectious and Tropical Diseases, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|
8
|
Drew DR, O'Donnell RA, Smith BJ, Crabb BS. A common cross-species function for the double epidermal growth factor-like modules of the highly divergent plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem 2004; 279:20147-53. [PMID: 14976193 DOI: 10.1074/jbc.m401114200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of structural and functional constraints on the C-terminal double epidermal growth factor (EGF)-like modules of merozoite surface protein (MSP)-1 and related proteins is of importance to the development of these molecules as malaria vaccines and drug targets. Using allelic replacement, we show that Plasmodium falciparum parasites can invade erythrocytes and grow efficiently in the absence of an MSP-1 protein with authentic MSP-1 EGF domains. In this mutant parasite line, the MSP-1 EGFs were replaced by the corresponding double EGF module from P. berghei MSP-8, the sequence of which shares only low identity with its MSP-1 counterpart. Hence, the C-terminal EGF domains of at least some Plasmodium surface proteins appear to perform the same function in asexual blood-stage development. Mapping the surface location of the few residues that are common to these functionally complementary EGF modules revealed the presence of a highly conserved pocket of potential functional significance. In contrast to MSP-8, an even more divergent double EGF module, that from the sexual stage protein PbS25, was not capable of complementing MSP-1 EGF function. More surprisingly, two chimeric double EGF modules comprising hybrids of the EGF domains from P. falciparum and P. chabaudi MSP-1 were also not capable of replacing the P. falciparum MSP-1 EGF module. Together, these data suggest that although the MSP-1 EGFs can accommodate extensive sequence diversity, there appear to be constraints that may restrict the simple accumulation of point mutations in the face of immune pressure in the field.
Collapse
Affiliation(s)
- Damien R Drew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3050, Australia
| | | | | | | |
Collapse
|
9
|
Aras RA, Fischer W, Perez-Perez GI, Crosatti M, Ando T, Haas R, Blaser MJ. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J Exp Med 2003; 198:1349-60. [PMID: 14581606 PMCID: PMC2194252 DOI: 10.1084/jem.20030381] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 07/23/2003] [Accepted: 09/22/2003] [Indexed: 12/13/2022] Open
Abstract
DNA rearrangement permits bacteria to regulate gene content and expression. In Helicobacter pylori, cagY, which contains an extraordinary number of direct DNA repeats, encodes a surface-exposed subunit of a (type IV) bacterial secretory system. Examining potential DNA rearrangements involving the cagY repeats indicated that recombination events invariably yield in-frame open reading frames, producing alternatively expressed genes. In individual hosts, H. pylori cell populations include strains that produce CagY proteins that differ in size, due to the predicted in-frame deletions or duplications, and elicit minimal or no host antibody recognition. Using repetitive DNA, H. pylori rearrangements in a host-exposed subunit of a conserved bacterial secretion system may permit a novel form of antigenic evasion.
Collapse
Affiliation(s)
- Rahul A Aras
- Department of Medicine, New York University School of Medicine, and VA Medical Center, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang N, Harrex AL, Holland BR, Fenton LE, Cannon RD, Schmid J. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res 2003; 13:2005-17. [PMID: 12952872 PMCID: PMC403672 DOI: 10.1101/gr.1024903] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 06/30/2003] [Indexed: 12/22/2022]
Abstract
The ALS (agglutinin-like sequence) gene family encodes proteins that play a role in adherence of the yeast Candida albicans to endothelial and epithelial cells. The proteins are proposed as virulence factors for this important fungal pathogen of humans. We analyzed 66 C. albicans strains, representing a worldwide collection of 266 infection-causing isolates, and discovered 60 alleles of the ALS7 open reading frame (ORF). Differences between alleles were largely caused by rearrangements of repeat elements in the so-called tandem repeat domain (21 different types occurred) and the VASES region (19 different types). C. albicans is diploid, and combinations of ALS7 alleles generated 49 different genotypes. ALS7 expression was detected in samples isolated directly from five oral candidosis patients. ORFs in the opposite direction contained within the ALS7 ORF were also transcribed in all strains tested. Isolates representing a more pathogenic general-purpose genotype (GPG) cluster of strains tended to have more tandem repeats than other strains. Two types of VASES regions were largely exclusive to GPG strains; the remaining types were largely exclusive to noncluster strains. Our results provide evidence that ALS7 is a hypermutable contingency locus and important for the success of C. albicans as an opportunistic pathogen of humans.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The geographic range of many parasites is restricted relative to that of their hosts. We study possible evolutionary mechanisms for this observation using a simple model that couples coevolution and demography. The model assumes that the environment consists of two habitats connected by movement and that coevolution is governed by quantitative traits. Our results demonstrate that host gene flow is an important determinant of parasite geographic range. Fluctuations in the rate of host gene flow cause shifts in parasite population densities and associated range expansions or contractions. In extreme cases, changing the rate of host gene flow can lead to global extinction of the parasite. Through a process we term demographic compensation, these shifts in parasite density may occur with little or no change in parasite adaptation to the host. As a consequence, reciprocal adaptation between host and parasite can become uncoupled from the rate of host gene flow.
Collapse
Affiliation(s)
- Scott L Nuismer
- 1 University Station C0930, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
12
|
|
13
|
Plebanski M, Proudfoot O, Pouniotis D, Coppel RL, Apostolopoulos V, Flannery G. Immunogenetics and the design of Plasmodium falciparum vaccines for use in malaria-endemic populations. J Clin Invest 2002; 110:295-301. [PMID: 12163446 PMCID: PMC151095 DOI: 10.1172/jci16163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Magdalena Plebanski
- Vaccine Development and Infectious Diseases Unit, The Austin Research Institute, A & RMC Hospital Campus, Heidelberg, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Plebanski M, Proudfoot O, Pouniotis D, Coppel RL, Apostolopoulos V, Flannery G. Immunogenetics and the design of Plasmodium falciparum vaccines for use in malaria-endemic populations. J Clin Invest 2002. [DOI: 10.1172/jci0216163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
King CL, Malhotra I, Wamachi A, Kioko J, Mungai P, Wahab SA, Koech D, Zimmerman P, Ouma J, Kazura JW. Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:356-64. [PMID: 11751981 DOI: 10.4049/jimmunol.168.1.356] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.
Collapse
Affiliation(s)
- Christopher L King
- Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, Harlan Wood Building, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|