1
|
Pei J, Feng T, Long H, Chen Y, Pei Y, Sun Y. Molecular Characterization and Virus-Induced Gene Silencing of a Collagen Gene, Me-col-1, in Root-Knot Nematode Meloidogyne enterolobii. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122103. [PMID: 36556467 PMCID: PMC9784238 DOI: 10.3390/life12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Meloidogyne enterolobii, a highly pathogenic root-knot nematode species, causes serious damage to agricultural production worldwide. Collagen is an important part of the nematode epidermis, which is crucial for nematode shape maintenance, motility, and reproduction. In this study, we report that a novel collagen gene, Me-col-1, from the highly pathogenic root-knot nematode species Meloidogyne enterolobi was required for the egg formation of this pathogen. Me-col-1 encodes a protein with the size of 35 kDa, which is closely related to collagen found in other nematodes. Real-time PCR assays showed that the expression of Me-col-1 was highest in eggs and lowest in pre-parasitic second-stage juveniles (preJ2). Interestingly, knockdown of Me-col-1 did not compromise the survival rate of preJ2 but significantly reduced the egg production and consequentially caused 35.79% lower multiplication rate (Pf/Pi) compared with control. Our study provides valuable information for better understanding the function of collagen genes in the nematode life cycle, which can be used in the development of effective approaches for nematode control.
Collapse
Affiliation(s)
- Ji Pei
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tuizi Feng
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibo Long
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence:
| | - Yuan Chen
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yueling Pei
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanfang Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Host-mediated RNAi of a Notch-like receptor gene in Meloidogyne incognita induces nematode resistance. Parasitology 2018; 145:1896-1906. [PMID: 29692277 DOI: 10.1017/s0031182018000641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GLP-1 (abnormal germline proliferation) is a Notch-like receptor protein that plays an essential role in pharyngeal development. In this study, an orthologue of Caenorhabditis elegans glp-1 was identified in Meloidogyne incognita. A computational analysis revealed that the orthologue contained almost all the domains present in the C. elegans gene: specifically, the LIN-12/Notch repeat, the ankyrin repeat, a transmembrane domain and different ligand-binding motifs were present in orthologue, but the epidermal growth factor-like motif was not observed. An expression analysis showed differential expression of glp-1 throughout the life cycle of M. incognita, with relatively higher expression in the egg stage. To evaluate the silencing efficacy of Mi-glp-1, transgenic Arabidopsis plants carrying double-stranded RNA constructs of glp-1 were generated, and infection of these plants with M. incognita resulted in a 47-50% reduction in the numbers of galls, females and egg masses. Females obtained from the transgenic RNAi lines exhibited 40-60% reductions in the transcript levels of the targeted glp-1 gene compared with females isolated from the control plants. Second-generation juveniles (J2s), which were descendants of the infected females from the transgenic lines, showed aberrant phenotypes. These J2s exhibited a significant decrease in the overall distance from the stylet to the metacorpus region, and this effect was accompanied by disruption around the metacorporeal bulb of the pharynx. The present study suggests a role for this gene in organ (pharynx) development during embryogenesis in M. incognita and its potential use as a target in the management of nematode infestations in plants.
Collapse
|
3
|
Bairwa A, Venkatasalam EP, Sudha R, Umamaheswari R, Singh BP. Techniques for characterization and eradication of potato cyst nematode: a review. J Parasit Dis 2017; 41:607-620. [PMID: 28848248 PMCID: PMC5555919 DOI: 10.1007/s12639-016-0873-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida. Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
Collapse
Affiliation(s)
| | | | - R. Sudha
- ICAR-CPRI, Shimla, Himachal Pradesh India
| | | | | |
Collapse
|
4
|
Banerjee S, Gill SS, Jain PK, Sirohi A. Isolation, cloning, and characterization of a cuticle collagen gene, Mi-col-5, in Meloidogyne incognita. 3 Biotech 2017; 7:64. [PMID: 28452012 PMCID: PMC5428120 DOI: 10.1007/s13205-017-0665-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/15/2017] [Indexed: 10/19/2022] Open
Abstract
Cuticle collagens form a major part of the nematode cuticle and are responsible for maintaining the overall shape of the animal and its protection from the external environment. Although substantial research on cuticle collagen genes has been carried out in Caenorhabditis elegans, their isolation and characterization in plant parasitic nematodes have been limited to a few genes only. In this study, a cuticle collagen gene, Mi-col-5, was isolated from root-knot nematode, Meloidogyne incognita. A partial segment of 402 bp was first cloned and analyzed on Gbrowse followed by subsequent cloning of the 1047 bp long full cDNA specifying the open reading frame. The deduced amino acid sequence showed 92% sequence identity with that of Mj-col-5. However, a transmembrane helix was predicted in Mi-col-5 which was not present in Mj-col-5. The conserved pattern of cysteine residues in Mi-col-5 suggested that it belonged to group 2 of nematode cuticle collagens but with a longer carboxy terminal region as was the case with Mj-col-5. Domain prediction revealed the presence of a nematode cuticle collagen N terminal domain and a pfam collagen domain along with collagen triple helix repeats. A phylogenetic tree based on the amino acid sequences showed evolutionary relationship of Mi-col-5 with cuticle collagens genes of other nematodes. 3D models for Mi-col-5 were predicted with the best confidence score of -2.78. Expression of Mi-col-5 transcript was found to be maximum in egg masses followed by adult females and J2s suggesting its role in the early stages of the development of the nematode during its life cycle.
Collapse
Affiliation(s)
- Sagar Banerjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | | | - Pradeep Kumar Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa, New Delhi, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India.
| |
Collapse
|
5
|
CASAVANT NCAROL, C. KUHL JOSEPH, XIAO FANGMING, B. CAPLAN ALLAN, DANDURAND LOUISEMARIE. Assessment of Globodera pallida RNA Extracted from Solanum Roots. J Nematol 2017; 49:12-20. [DOI: 10.21307/jofnem-2017-041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Abrantes IMDO. Immunolocalization of a putative cuticular collagen protein in several developmental stages of Meloidogyne arenaria, Globodera pallida and G. rostochiensis. J Helminthol 2002; 76:1-6. [PMID: 12018190 DOI: 10.1079/joh200194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The monoclonal antibody IACR-CCNj.3d has previously been used to isolate a gene (gp-col-8) with strong similarity to cuticular collagen from a mixed stage Globodera pallida cDNA expression library. The antibody has also been shown to label specifically the amphidial canal of pre-parasitic second stage juveniles (J2) of several plant nematode species without any reactivity on the cuticular surface, indicating that this protein is either not present or is inaccessible on the cuticular surface. This paper investigates the cross-reactivity of Mab IACR-CCNj.3d with Meloidogyne arenaria and the localization of the putative collagen protein on the cuticular surface of parasitic stages in planta and on the cuticular surface of juveniles inside eggs. The antigen was shown to be present in all developmental stages of the two species of potato cyst nematodes and M. arenaria. The antibody bound strongly to the amphidial canal and hypodermis of pre-parasitic J2 and adult females. The antigen was present on the cuticular surface of the sausage-shaped J2 in planta and of first stage juveniles (J1) inside the eggs. The presence of collagen on the surface of the cuticle of moulting stages of plant parasitic nematodes has been observed for the first time. It is clear that this protein has a role in the construction of the cuticle of the first stage juveniles and parasitic second stage juveniles, during moulting inside the eggs and in the root tissue, respectively.
Collapse
Affiliation(s)
- I M de O Abrantes
- Departamento de Zoologia e Instituto do Ambiente e Vida, Universidade de Coimbra, Portugal
| |
Collapse
|