1
|
Santin R, Vieira IA, Nunes JC, Benevides ML, Quadros F, Brusius-Facchin AC, Macedo G, Bertoni APS. A novel DMD intronic alteration: a potentially disease-causing variant of an intermediate muscular dystrophy phenotype. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:93-100. [PMID: 34355126 PMCID: PMC8290513 DOI: 10.36185/2532-1900-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic germline variants in DMD gene, which encodes the well-known cytoskeletal protein named dystrophin, are associated with a wide range of dystrophinopathies disorders, such as Duchenne muscular dystrophy (DMD, severe form), Becker muscular dystrophy (BMD, mild form) and intermediate muscular dystrophy (IMD). Muscle biopsy, immunohistochemistry, molecular (multiplex ligation-dependent probe amplification (MLPA)/next-generation sequencing (NGS) and Sanger methods) and in silico analyses were performed in order to identify alterations in DMD gene and protein in a patient with a clinical manifestation and with high creatine kinase levels. Herein, we described a previously unreported intronic variant in DMD and reduced dystrophin staining in the muscle biopsy. This novel DMD variant allele, c.9649+4A>T that was located in a splice donor site within intron 66. Sanger sequencing analysis from maternal DNA showed the presence of both variant c.9649+4A>T and wild-type (WT) DMD alleles. Different computational tools suggested that this nucleotide change might affect splicing through a WT donor site disruption, occurring in an evolutionarily conserved region. Indeed, we observed that this novel variant, could explain the reduced dystrophin protein levels and discontinuous sarcolemmal staining in muscle biopsy, which suggests that c.9649+4A>T allele may be re-classified as pathogenic in the future. Our data show that the c.9649+4A>T intronic sequence variant in the DMD gene may be associated with an IMD phenotype and our findings reinforce the importance of a more precise diagnosis combining muscle biopsy, molecular techniques and comprehensive in silico approaches in the clinical cases with negative results for conventional genetic analysis.
Collapse
Affiliation(s)
- Ricardo Santin
- Santa Casa de Misericórdia de Porto Alegre, (ISCMPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Igor Araujo Vieira
- Programa de Pós Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jean Costa Nunes
- Neurodiagnostic Brazil - Floranópolis, Santa Catarina (SC), Brazil
- Departmento de Patologia, Universidade Federal de Santa Catarina (UFSC), Hospital Polydoro Ernani de São Thiago, SC, Brazil
| | - Maria Luiza Benevides
- Departmento de Neurologia, Hospital Governador Celso Ramos, Santa Catarina (SC), Brazil
| | - Fernanda Quadros
- Santa Casa de Misericórdia de Porto Alegre, (ISCMPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Carolina Brusius-Facchin
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel Macedo
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Medicina Personalizada, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Normal and altered pre-mRNA processing in the DMD gene. Hum Genet 2017; 136:1155-1172. [DOI: 10.1007/s00439-017-1820-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
|
3
|
Rimessi P, Fabris M, Bovolenta M, Bassi E, Falzarano S, Gualandi F, Rapezzi C, Coccolo F, Perrone D, Medici A, Ferlini A. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy. Hum Gene Ther 2010; 21:1137-46. [PMID: 20486769 DOI: 10.1089/hum.2010.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Paola Rimessi
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spitali P, Rimessi P, Fabris M, Perrone D, Falzarano S, Bovolenta M, Trabanelli C, Mari L, Bassi E, Tuffery S, Gualandi F, Maraldi NM, Sabatelli-Giraud P, Medici A, Merlini L, Ferlini A. Exon skipping-mediated dystrophin reading frame restoration for small mutations. Hum Mutat 2010; 30:1527-34. [PMID: 19760747 DOI: 10.1002/humu.21092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exon skipping using antisense oligonucleotides (AONs) has successfully been used to reframe the mRNA in various Duchenne muscular dystrophy patients carrying deletions in the DMD gene. In this study we tested the feasibility of the exon skipping approach for patients with small mutations in in-frame exons. We first identified 54 disease-causing point mutations. We selected five patients with nonsense or frameshifting mutations in exons 10, 16, 26, 33, and 34. Wild-type and mutation specific 2'OMePS AONs were tested in cell-free splicing assays and in cultured cells derived from the selected patients. The obtained results confirm cell-free splicing assay as an alternative system to test exon skipping propensity when patients' cells are unavailable. In myogenic cells, similar levels of exon skipping were observed for wild-type and mutation specific AONs for exons 16, 26, and 33, whereas for exon 10 and exon 34 the efficacy of the AONs was significantly different. Interestingly, in some cases skipping efficiencies for mutated exons were quite dissimilar when compared with previous reports on the respective wild-type exons. This behavior may be related to the effect of the mutations on exon skipping propensity, and highlights the complexity of identifying optimal AONs for skipping exons with small mutations.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ruszczak C, Mirza A, Menhart N. Differential stabilities of alternative exon-skipped rod motifs of dystrophin. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:921-8. [PMID: 19286484 PMCID: PMC2696117 DOI: 10.1016/j.bbapap.2009.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/16/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
Exon skipping repair is a strategy being investigated in early stage clinical trials to treat Duchenne muscular dystrophy. This is most applicable to the majority of cases which arise when genetic defects cause frame shift mutations, and induced exon skipping of out-of-phase exons restores the reading frame. However, the consequences to the edited protein so produced have not been considered. In many cases alternative routes to restoring the reading frame are possible, and we show in a test case involving exon 44 that the resulting differently edited proteins greatly vary in stability, with one of them very similar to normal unskipped dystrophin, and the other much less stable as assessed by the thermodynamics of folding as well as resistance to proteolysis. This has implications for the design of optimal therapeutic exon skipping strategies, which presumably wish to result repairs with as much fidelity to normal dystrophin as possible.
Collapse
Affiliation(s)
- Chris Ruszczak
- Division of Biology, Illinois Institute of Technology, 3101 S Dearborn, Chicago IL 60616 USA
| | - Ahmed Mirza
- Division of Biology, Illinois Institute of Technology, 3101 S Dearborn, Chicago IL 60616 USA
| | - Nick Menhart
- Division of Biology, Illinois Institute of Technology, 3101 S Dearborn, Chicago IL 60616 USA
| |
Collapse
|
6
|
Bovolenta M, Neri M, Fini S, Fabris M, Trabanelli C, Venturoli A, Martoni E, Bassi E, Spitali P, Brioschi S, Falzarano MS, Rimessi P, Ciccone R, Ashton E, McCauley J, Yau S, Abbs S, Muntoni F, Merlini L, Gualandi F, Ferlini A. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics 2008; 9:572. [PMID: 19040728 PMCID: PMC2612025 DOI: 10.1186/1471-2164-9-572] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/28/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The commonest pathogenic DMD changes are intragenic deletions/duplications which make up to 78% of all cases and point mutations (roughly 20%) detectable through direct sequencing. The remaining mutations (about 2%) are thought to be pure intronic rearrangements/mutations or 5'-3' UTR changes. In order to screen the huge DMD gene for all types of copy number variation mutations we designed a novel custom high density comparative genomic hybridisation array which contains the full genomic region of the DMD gene and spans from 100 kb upstream to 100 kb downstream of the 2.2 Mb DMD gene. RESULTS We studied 12 DMD/BMD patients who either had no detectable mutations or carried previously identified quantitative pathogenic changes in the DMD gene. We validated the array on patients with previously known mutations as well as unaffected controls, we identified three novel pure intronic rearrangements and we defined all the mutation breakpoints both in the introns and in the 3' UTR region. We also detected a novel polymorphic intron 2 deletion/duplication variation. Despite the high resolution of this approach, RNA studies were required to confirm the functional significance of the intronic mutations identified by CGH. In addition, RNA analysis identified three intronic pathogenic variations affecting splicing which had not been detected by the CGH analysis. CONCLUSION This novel technology represents an effective high throughput tool to identify both common and rarer DMD rearrangements. RNA studies are required in order to validate the significance of the CGH array findings. The combination of these tools will fully cover the identification of causative DMD rearrangements in both coding and non-coding regions, particularly in patients in whom standard although extensive techniques are unable to detect a mutation.
Collapse
Affiliation(s)
- Matteo Bovolenta
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Marcella Neri
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Sergio Fini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Marina Fabris
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Cecilia Trabanelli
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Anna Venturoli
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Elena Martoni
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Elena Bassi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Pietro Spitali
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Simona Brioschi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Maria S Falzarano
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Paola Rimessi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Roberto Ciccone
- Sezione di Biologia generale e Genetica Medica, University of Pavia, Italy
| | - Emma Ashton
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Joanne McCauley
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Shu Yau
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Stephen Abbs
- DNA Laboratory, Genetics Centre, Guy's & St. Thomas NHS Foundation Trust, London, UK
| | - Francesco Muntoni
- UCL Institute of Child Health, Dubowitz Neuromuscular Centre, London, UK
| | - Luciano Merlini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Francesca Gualandi
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| | - Alessandra Ferlini
- Sezione di Genetica Medica, University of Ferrara, Italy
- U.O. Genetica Medica St. Anna Hospital, Italy
| |
Collapse
|
7
|
Hegde MR, Chin ELH, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat 2008; 29:1091-9. [PMID: 18663755 PMCID: PMC2574813 DOI: 10.1002/humu.20831] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.
Collapse
Affiliation(s)
- Madhuri R Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Rimessi P, Gualandi F, Duprez L, Spitali P, Neri M, Merlini L, Calzolari E, Muntoni F, Ferlini A. Genomic and transcription studies as diagnostic tools for a prenatal detection of X-linked dilated cardiomyopathy due to a dystrophin gene mutation. Am J Med Genet A 2005; 132A:391-4. [PMID: 15641026 DOI: 10.1002/ajmg.a.30513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X-linked dilated cardiomyopathy (XLDC) represents a form of dystrophinopathy with exclusive heart involvement. Here a prenatal diagnosis of this condition performed in a family with XLDC is described. In this family, the causative mutation was a pure intronic deletion, which induces the splicing of a novel, aberrant, and out-of-frame exon into the dystrophin transcript. The genetic test was performed by defining both the DNA (villous) and the RNA (amniocyte) configuration. The prenatal diagnosis determined that the fetus was female, and a carrier of the genomic deletion. RNA analysis on cultured amniocytes revealed the presence of an easily detectable dystrophin transcript, as well as the co-existence of both the wild-type and the abnormal splicing profile. Our analysis represents the first report of a prenatal diagnosis in XLDC and also indicates the feasibility of dystrophin mutation detection on RNA from amniocytes. This finding suggests that the dystrophin splicing pattern in amniocytes and skeletal muscle is similar, and that, therefore, this approach could be used in other prenatal dystrophin mutation detection, where abnormal RNA splicing is thought to play a role, or for specific cases in which no mutations have been identified in the coding regions.
Collapse
Affiliation(s)
- Paola Rimessi
- Dipartimento di Medicina Sperimentale e Diagnostica, Sezione di Genetica Medica, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cardazzo B, Bargelloni L, Toffolatti L, Rimessi P, Ferlini A, Patarnello T. Tempo and mode of evolution of a primate-specific retrotransposon belonging to the LINE 1 family. J Mol Evol 2004; 57 Suppl 1:S268-76. [PMID: 15008424 DOI: 10.1007/s00239-003-0036-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L1P_MA2 is a primate-specific subfamily of L1 retrotransposons. The consensus sequence of this element differs from the canonical L1 consensus by the presence of a 3800-bp region in 5' (L1M1_5). Part of this region has been proposed to be involved in a dystrophin mutation affecting the correct splicing of the gene and causing an X-linked dilated cardiomyopathy. In consideration of the potential involvement in splicing regulation of this element and also because of its atypical structure, we investigated its evolutionary history by analyzing the inter- and intraspecific divergence of L1P_MA2 sequences in various species of primates. The resulting phylogenetic trees show long terminal branches and short basal internodes, as expected for a rapid event of diversification that occurred in the past. The phylogenetic analysis and the intraspecific divergence estimates revealed a pattern of evolution for this element similar in all primates with the exception of lemurs, thus suggesting that the major wave of expansion of L1P_MA2 in primate genomes occurred after the divergence between Prosimiae and Anthropoidea. These results clearly indicate that a phylogenetic approach is more appropriate than methods based on sequence data from a single species, when investigating time and mode of evolution of retro-elements.
Collapse
Affiliation(s)
- Barbara Cardazzo
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Cohen N, Rimessi P, Gualandi F, Ferlini A, Muntoni F. In vivo study of an aberrant dystrophin exon inclusion in X-linked dilated cardiomyopathy. Biochem Biophys Res Commun 2004; 317:1215-20. [PMID: 15094399 DOI: 10.1016/j.bbrc.2004.03.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Indexed: 11/20/2022]
Abstract
We previously identified a dystrophin intron 11 rearrangement in one family with X-linked dilated cardiomyopathy, causing incorporation of an aberrant exon in a tissue-specific manner. In this study we analyzed the role of different intron 11 genomic regions in the regulation of splicing by using mini-genes based approach, in C2C12 (skeletal muscle) myoblasts and myotubes, H9C2 cardiomyocytes, and HeLa cells. We show that inclusion of the aberrant exon is favored in H9C2 and differentiated C2C12 myotubes. These data suggest that the aberrant exon undergoes a differentiation-specific splicing. Unexpectedly, length of intron has a favorable effect in inclusion of the aberrant exon in the cardiac cells, suggesting that cardiac cells might be more prone to steric hindrance of trans-acting factors, involved in the inclusion of the aberrant exon. Furthermore, the cultured cell system used can serve as a suitable model to study human alternative splicing.
Collapse
Affiliation(s)
- Niaz Cohen
- Dubowitz Neuromuscular Unit, Department of Paediatrics, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | |
Collapse
|