1
|
Han WY, Hou BH, Lee WC, Chan TC, Lin TH, Chen HM. Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:895-913. [PMID: 36987558 DOI: 10.1111/tpj.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
5'-3' exoribonucleases (XRNs) play crucial roles in the control of RNA processing, quality, and quantity in eukaryotes. Although genome-wide profiling of RNA decay fragments is now feasible, how XRNs shape the plant mRNA degradome remains elusive. Here, we profiled and analyzed the RNA degradomes of Arabidopsis wild-type and mutant plants with defects in XRN activity. Deficiency of nuclear XRN3 or cytoplasmic XRN4 activity but not nuclear XRN2 activity greatly altered Arabidopsis mRNA decay profiles. Short excised linear introns and cleaved pre-mRNA fragments downstream of polyadenylation sites were polyadenylated and stabilized in the xrn3 mutant, demonstrating the unique function of XRN3 in the removal of cleavage remnants from pre-mRNA processing. Further analysis of stabilized XRN3 substrates confirmed that pre-mRNA 3' end cleavage frequently occurs after adenosine. The most abundant decay intermediates in wild-type plants include not only the primary substrates of XRN4 but also the products of XRN4-mediated cytoplasmic decay. An increase in decay intermediates with 5' ends upstream of a consensus motif in the xrn4 mutant suggests that there is an endonucleolytic cleavage mechanism targeting the 3' untranslated regions of many Arabidopsis mRNAs. However, analysis of decay fragments in the xrn4 mutant indicated that, except for microRNA-directed slicing, endonucleolytic cleavage events in the coding sequence rarely result in major decay intermediates. Together, these findings reveal the major substrates and products of nuclear and cytoplasmic XRNs along Arabidopsis transcripts and provide a basis for precise interpretation of RNA degradome data.
Collapse
Affiliation(s)
- Wan-Yin Han
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tze-Ching Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Hsiang Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
2
|
Measurements of the impact of 3' end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput Biol 2013; 9:e1002934. [PMID: 23505350 PMCID: PMC3591272 DOI: 10.1371/journal.pcbi.1002934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
A full understanding of gene regulation requires an understanding of the contributions that the various regulatory regions have on gene expression. Although it is well established that sequences downstream of the main promoter can affect expression, our understanding of the scale of this effect and how it is encoded in the DNA is limited. Here, to measure the effect of native S. cerevisiae 3′ end sequences on expression, we constructed a library of 85 fluorescent reporter strains that differ only in their 3′ end region. Notably, despite being driven by the same strong promoter, our library spans a continuous twelve-fold range of expression values. These measurements correlate with endogenous mRNA levels, suggesting that the 3′ end contributes to constitutive differences in mRNA levels. We used deep sequencing to map the 3′UTR ends of our strains and show that determination of polyadenylation sites is intrinsic to the local 3′ end sequence. Polyadenylation mapping was followed by sequence analysis, we found that increased A/T content upstream of the main polyadenylation site correlates with higher expression, both in the library and genome-wide, suggesting that native genes differ by the encoded efficiency of 3′ end processing. Finally, we use single cells fluorescence measurements, in different promoter activation levels, to show that 3′ end sequences modulate protein expression dynamics differently than promoters, by predominantly affecting the size of protein production bursts as opposed to the frequency at which these bursts occur. Altogether, our results lead to a more complete understanding of gene regulation by demonstrating that 3′ end regions have a unique and sequence dependent effect on gene expression. A basic question in gene expression is the relative contribution of different regulatory layers and genomic regions to the differences in protein levels. In this work we concentrated on the effect of 3′ end sequences. For this, we constructed a library of yeast strains that differ only by a native 3′ end region integrated downstream to a reported gene driven by a constant inducible promoter. Thus we could attribute all differences in reporter expression between the strains to the different 3′ end sequences. Interestingly, we found that despite being driven by the same strong, inducible promoter, our library spanned a wide and continuous range of expression levels of more than twelve-fold. As these measurements represent the sole effect of the 3′ end region, we quantify the contribution of these sequences to the variance in mRNA levels by comparing our measurements to endogenous mRNA levels. We follow by sequence analysis to find a simple sequence signature that correlates with expression. In addition, single cell analysis reveals distinct noise dynamics of 3′ end mediated differences in expression compared to different levels of promoter activation leading to a more complete understanding of gene expression which also incorporates the effect of these regions.
Collapse
|
3
|
Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains. Mol Cell Biol 2012; 32:4769-79. [PMID: 23007158 DOI: 10.1128/mcb.00809-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When a polyadenylated nonstop transcript is fully translated, a complex consisting of the ribosome, the nonstop mRNA, and the C-terminally polylysine-tagged protein is generated. In Saccharomyces cerevisiae, a 3-step quality control system prevents formation of such dead-end complexes. Nonstop mRNA is rapidly degraded, translation of nonstop mRNA is repressed, and finally, nonstop proteins are cotranslationally degraded. Nonstop mRNA degradation depends on Ski7 and the exosome; nonstop protein degradation depends on the ribosome-bound E3 ligase Ltn1 and the proteasome. However, components which mediate translational repression of nonstop mRNA have previously not been identified. Here we show that the ribosome-bound chaperone system consisting of the ribosome-associated complex (RAC) and the Hsp70 homolog Ssb is required to stabilize translationally repressed ribosome-polylysine protein complexes, without affecting the folding or the degradation of polylysine proteins. As a consequence, in the absence of RAC/Ssb, polylysine proteins escaped translational repression and subsequently folded into their native conformation. This active role of RAC/Ssb in the quality control of polylysine proteins significantly contributed to the low level of expression of nonstop transcripts in vivo.
Collapse
|
4
|
Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010; 143:1018-29. [PMID: 21145465 PMCID: PMC3022516 DOI: 10.1016/j.cell.2010.11.020] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/28/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| | - Philipp Kapranov
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| | - Sylvain Foissac
- Integromics, S.L., Grisolía, 2 - 28760 Tres Cantos Madrid, Spain
| | - Sang Woo Kim
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Elane Fishilevich
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - A. Paula Monaghan
- Department of Neurobiology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, Pennsylvania 15260, USA
| | - Bino John
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Patrice M. Milos
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Seoane S, Lamas-Maceiras M, Rodríguez-Torres AM, Freire-Picos MA. Involvement of Pta1, Pcf11 and a KlCYC1 AU-rich element in alternative RNA 3'-end processing selection in yeast. FEBS Lett 2009; 583:2843-8. [PMID: 19646984 DOI: 10.1016/j.febslet.2009.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/24/2022]
Abstract
This work reports the involvement of yeast RNA processing factors Pta1 and Pcf11 in alternative 3'-end RNA processing. The pta1-1 and pcf11-2 mutations changed the predominance of KlCYC1 1.14 and 1.5 kb transcript isoforms. Mutation of the KlCYC1 3'-UTR AU-rich sequence at positions 679-690 (mutant M1) altered transcript predominance. Moreover, expression of M1 in the yeast mutants partially suppressed their effects in the predominance pattern. The combination of the M1 and M2 (694-698 deletion) mutations abolished the alternative processing. Pta1 involvement in this selection was confirmed using the Pta1-td degron strain.
Collapse
Affiliation(s)
- Silvia Seoane
- Universidade da Coruña, Facultad de Ciencias, Campus da Zapateira S/N, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
6
|
Inada T, Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J 2005; 24:1584-95. [PMID: 15933721 PMCID: PMC1142571 DOI: 10.1038/sj.emboj.7600636] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 03/03/2005] [Indexed: 11/09/2022] Open
Abstract
A novel mRNA surveillance for mRNA lacking a termination codon (nonstop mRNA) has been proposed in which Ski7p is thought to recognize stalled ribosomes at the 3' end of mRNA. Here we report our analysis of translation and decay of nonstop mRNAs in Saccharomyces cerevisiae. Although the reduction of nonstop mRNAs was only 4.5-fold, a level that is sufficient for residual protein synthesis, translation products of nonstop mRNAs were hardly detectable. We show that nonstop mRNAs were associated with polysomes, but not with Pab1p. We also show that ribosomes translating nonstop mRNA formed stable and heavy polysome complexes with mRNA. These data suggest that ribosome stalling at the 3' end of nonstop mRNA may block further rounds of translation, hence repressing protein synthesis. Furthermore, it was found that the 5' --> 3' decay pathway was accelerated for nonstop mRNA decay in the absence of Ski7p. We also found that translation of aberrant mRNAs with a shortened 3'-UTR was repressed, suggesting that an improper spatial distance between the termination codon and the 3' end of mRNA results in translation repression.
Collapse
Affiliation(s)
- Toshifumi Inada
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | |
Collapse
|
7
|
Aller-Arranz E, Randez-Gil F, Barrio E, Prieto JA. A DNA region of Torulaspora delbrueckii containing the HIS3 gene: sequence, gene order and evolution. Yeast 2004; 20:1359-68. [PMID: 14663828 DOI: 10.1002/yea.1040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We cloned a genomic DNA fragment of the yeast Torulaspora delbrueckii by complementation of a Saccharomyces cerevisiae his3 mutant strain. DNA sequence analysis revealed that the fragment contained two complete ORFs, which share a high similarity with S. cerevisiae His3p and Mrp51p, respectively. The cloned TdHIS3 gene fully complemented the his3 mutation of S. cerevisiae, confirming that it encodes for the imidazoleglycerol-phosphate dehydrate of T. delbrueckii. Two additional ORFs, with a high homology to S. cerevisiae PET56 and DED1 genes, were mapped upstream and downstream from TdHIS3 and TdMRP51, respectively. This genetic organization is analogous to that previously found in Saccharomyces kluyveri and Zygosaccharomyces rouxii. The evolutionary significance of gene order in this chromosomal region is analysed and discussed.
Collapse
Affiliation(s)
- Elena Aller-Arranz
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46100-Burjassot Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Graber JH, McAllister GD, Smith TF. Probabilistic prediction of Saccharomyces cerevisiae mRNA 3'-processing sites. Nucleic Acids Res 2002; 30:1851-8. [PMID: 11937640 PMCID: PMC113205 DOI: 10.1093/nar/30.8.1851] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 02/20/2002] [Accepted: 02/20/2002] [Indexed: 11/14/2022] Open
Abstract
We present a tool for the prediction of mRNA 3'-processing (cleavage and polyadenylation) sites in the yeast Saccharomyces cerevisiae, based on a discrete state-space model or hidden Markov model. Comparison of predicted sites with experimentally verified 3'-processing sites indicates good agreement. All predicted or known yeast genes were analyzed to find probable 3'-processing sites. Known alternative 3'-processing sites, both within the 3'-untranslated region and within the protein coding sequence were successfully identified, leading to the possibility of prediction of previously unknown alternative sites. The lack of an apparent 3'-processing site calls into question the validity of some predicted genes. This is specifically investigated for predicted genes with overlapping coding sequences.
Collapse
Affiliation(s)
- Joel H Graber
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
9
|
van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002; 295:2262-4. [PMID: 11910110 DOI: 10.1126/science.1067272] [Citation(s) in RCA: 425] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
One role of messenger RNA (mRNA) degradation is to maintain the fidelity of gene expression by degrading aberrant transcripts. Recent results show that mRNAs without translation termination codons are unstable in eukaryotic cells. We used yeast mutants to demonstrate that these "nonstop" mRNAs are degraded by the exosome in a 3'-to-5' direction. The degradation of nonstop transcripts requires the exosome-associated protein Ski7p. Ski7p is closely related to the translation elongation factor EF1A and the translation termination factor eRF3. This suggests that the recognition of nonstop mRNAs involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) on the ribosome, thereby bringing the exosome to a mRNA with a ribosome stalled near the 3' end. This system efficiently degrades mRNAs that are prematurely polyadenylated within the coding region and prevents their expression.
Collapse
Affiliation(s)
- Ambro van Hoof
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA. :
| | | | | | | |
Collapse
|
10
|
van Helden J, del Olmo M, Pérez-Ortín JE. Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. Nucleic Acids Res 2000; 28:1000-10. [PMID: 10648794 PMCID: PMC102588 DOI: 10.1093/nar/28.4.1000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Revised: 12/22/1999] [Accepted: 12/22/1999] [Indexed: 11/14/2022] Open
Abstract
The study of a few genes has permitted the identification of three elements that constitute a yeast polyadenyl-ation signal: the efficiency element (EE), the positioning element and the actual site for cleavage and poly-adenyl-ation. In this paper we perform an analysis of oligonucleotide composition on the sequences located downstream of the stop codon of all yeast genes. Several oligonucleotide families appear over-represented with a high significance (referred to herein as 'words'). The family with the highest over-representation includes the oligonucleotides shown experimentally to play a role as EEs. The word with the highest score is TATATA, followed, among others, by a series of single-nucleotide variants (TATGTA, TACATA, TAAATA.) and one-letter shifts (ATATAT). A position analysis reveals that those words have a high preference to be in 3' flanks of yeast genes and there they have a very uneven distribution, with a marked peak around 35 bp after the stop codon. Of the predicted ORFs, 85% show one or more of those sequences. Similar results were obtained using a data set of EST sequences. Other clusters of over-represented words are also detected, namely T- and A-rich signals. Using these results and previously known data we propose a general model for the 3' trailers of yeast mRNAs.
Collapse
Affiliation(s)
- J van Helden
- Unité de Conformation des Macromolécules Biologiques, Université Libre de Bruxelles, CP 160/16, 50 avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium.
| | | | | |
Collapse
|