1
|
Co-Translational Protein Folding and Sorting in Chloroplasts. PLANTS 2020; 9:plants9020214. [PMID: 32045984 PMCID: PMC7076657 DOI: 10.3390/plants9020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Collapse
|
2
|
Affiliation(s)
- Søren A Ladefoged
- Department of Medical Microbiology and Immunology University of Aarhus, Denmark.,Department of Clinical Biochemistry University Hospital of Aarhus, Denmark
| |
Collapse
|
3
|
Archaea signal recognition particle shows the way. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:485051. [PMID: 20672053 PMCID: PMC2905702 DOI: 10.1155/2010/485051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 01/24/2023]
Abstract
Archaea SRP is composed of an SRP RNA molecule and two bound proteins named SRP19 and SRP54. Regulated by the binding and hydrolysis of guanosine triphosphates, the RNA-bound SRP54 protein transiently associates not only with the hydrophobic signal sequence as it emerges from the ribosomal exit tunnel, but also interacts with the membrane-associated SRP receptor (FtsY). Comparative analyses of the archaea genomes and their SRP component sequences, combined with structural and biochemical data, support a prominent role of the SRP RNA in the assembly and function of the archaea SRP. The 5e motif, which in eukaryotes binds a 72 kilodalton protein, is preserved in most archaea SRP RNAs despite the lack of an archaea SRP72 homolog. The primary function of the 5e region may be to serve as a hinge, strategically positioned between the small and large SRP domain, allowing the elongated SRP to bind simultaneously to distant ribosomal sites. SRP19, required in eukaryotes for initiating SRP assembly, appears to play a subordinate role in the archaea SRP or may be defunct. The N-terminal A region and a novel C-terminal R region of the archaea SRP receptor (FtsY) are strikingly diverse or absent even among the members of a taxonomic subgroup.
Collapse
|
4
|
The distinct anchoring mechanism of FtsY from different microbes. Curr Microbiol 2009; 59:336-40. [PMID: 19536595 DOI: 10.1007/s00284-009-9439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
The SRP receptor FtsY, which is involved in targeting and translocating membrane protein, is generally composed of the N-terminal domain and the NG domain. Although FtsY was highly homologous in the composition of amino acids and functions among microbes, the different mechanism in the location of FtsYs from different bacteria such as S. coelicolor and E. coli were discovered in this study by laser scanning confocal microscope (LSCM) in vivo and molecular techniques in vitro. The results revealed that the N-terminal domain of S. coelicolor FtsY was indispensable for FtsY's anchoring membrane, and while the A domain of E. coli FtsY was dispensable. Moreover, the A domain of E. coli FtsY might promote itself to bind the membrane depending on the location images and Western blotting.
Collapse
|
5
|
Shen XL, Dong HJ, Hou XP, Guan WJ, Li YQ. FtsY Affects Sporulation and Antibiotic Production by whiH in Streptomyces coelicolor. Curr Microbiol 2007; 56:61-5. [DOI: 10.1007/s00284-007-9039-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/04/2007] [Indexed: 11/28/2022]
|
6
|
Mitra K, Frank J, Driessen A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nat Struct Mol Biol 2007; 13:957-64. [PMID: 17082791 DOI: 10.1038/nsmb1166] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded protein-conducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide triphosphates as fuel. This perspective focuses on reinterpreting existing experimental data in light of a recently proposed PCC model comprising a front-to-front dimer of SecY or Sec61 heterotrimeric complexes. In this new framework, we propose (i) a revised model for SRP-SR-mediated docking of the ribosome-nascent polypeptide to the PCC; (ii) that the dynamic interplay between protein substrate, soluble factors and PCC controls the opening and closing of a transmembrane channel across, and/or a lateral gate into, the membrane; and (iii) that co- and post-translational translocation, involving the ribosome and SecA, respectively, not only converge at the PCC but also use analogous mechanisms for coordinating protein translocation.
Collapse
|
7
|
Eitan A, Bibi E. The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J Bacteriol 2004; 186:2492-4. [PMID: 15060054 PMCID: PMC412183 DOI: 10.1128/jb.186.8.2492-2494.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have proposed that the N-terminal A domain (approximately 200 amino acid residues) of the Escherichia coli signal recognition particle (SRP) receptor, FtsY, is required for membrane targeting. In contrast to this suggestion, we show that A domain-truncated versions of FtsY, harboring only domains N and G, are functional. Therefore, we propose that N and G domains constitute the core SRP receptor.
Collapse
Affiliation(s)
- Asa Eitan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
8
|
Shepotinovskaya IV, Freymann DM. Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:107-14. [PMID: 12009409 PMCID: PMC3543699 DOI: 10.1016/s0167-4838(02)00287-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structural basis for the GTP-dependent co-translational targeting complex between the signal recognition particle (SRP) and its receptor is unknown. The complex has been shown to have unusual kinetics of formation, and association in vivo is likely to be dependent on catalysis by the SRP RNA. We have determined conditions for RNA-independent association of the 'NG' GTPase domains of the prokaryotic homologs of the SRP components, Ffh and FtsY, from Thermus aquaticus. Consistent with previous studies of the Escherichia coli proteins, the kinetics of association and dissociation are slow. The T. aquaticus FtsY is sensitive to an endogenous proteolytic activity that cleaves at two sites--the first in a lengthy linker peptide that spans the interface between the N and G domains, and the second near the N-terminus of the N domain of FtsY. Remarkably, this second cleavage occurs only on formation of the Ffh/FtsY complex. The change in protease sensitivity of this region, which is relatively unstructured in the FtsY but not in the Ffh NG domain, implies that it undergoes conformational change on formation of the complex between the two proteins. The N domain, therefore, participates in the interactions that mediate the GTP-dependent formation of the targeting complex.
Collapse
Affiliation(s)
| | - Douglas M. Freymann
- Corresponding author. Tel.: +1-312-503-1877; fax: +1-312-503-5349. (D.M. Freymann)
| |
Collapse
|
9
|
Abstract
The signal recognition particle (SRP) and its membrane-associated receptor (SR) catalyze targeting of nascent secretory and membrane proteins to the protein translocation apparatus of the cell. Components of the SRP pathway and salient features of the molecular mechanism of SRP-dependent protein targeting are conserved in all three kingdoms of life. Recent advances in the structure determination of a number of key components in the eukaryotic and prokaryotic SRP pathway provide new insight into the molecular basis of SRP function, and they set the stage for future work toward an integrated picture that takes into account the dynamic and contextual properties of this remarkable cellular machine.
Collapse
Affiliation(s)
- R J Keenan
- Maxygen, 515 Galveston Drive, Redwood City, California 94063, USA.
| | | | | | | |
Collapse
|
10
|
Herskovits AA, Bochkareva ES, Bibi E. New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol 2000; 38:927-39. [PMID: 11123669 DOI: 10.1046/j.1365-2958.2000.02198.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo and in vitro studies have suggested that the bacterial version of the mammalian signal recognition particle (SRP) system plays an essential and selective role in protein biogenesis. The bacterial SRP system consists of at least two proteins and an RNA molecule (termed Ffh, FtsY and 4.5S RNA, respectively, in Escherichia coli). Recent evidence suggests that other putative bacterial-specific SRP components may also exist. In vitro experiments confirmed the expected basic features of the bacterial SRP system by demonstrating interactions among the SRP components themselves, between them and ribosomes, ribosome-linked hydrophobic nascent polypeptides or inner membranes. The availability of a conserved (and essential) bacterial SRP version has facilitated the implementation of powerful genetic and biochemical approaches for studying the cascade of events during the SRP-mediated targeting process in vivo and in vitro as well as the three-dimensional structures and the properties of each SRP component and complex.
Collapse
Affiliation(s)
- A A Herskovits
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
11
|
Quina FH, Hinze WL. Surfactant-Mediated Cloud Point Extractions: An Environmentally Benign Alternative Separation Approach. Ind Eng Chem Res 1999. [DOI: 10.1021/ie980389n] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank H. Quina
- Department of Chemistry, Wake Forest University, P.O. Box 7486, Winston-Salem, North Carolina 27109
| | - Willie L. Hinze
- Department of Chemistry, Wake Forest University, P.O. Box 7486, Winston-Salem, North Carolina 27109
| |
Collapse
|
12
|
Kogata N, Nishio K, Hirohashi T, Kikuchi S, Nakai M. Involvement of a chloroplast homologue of the signal recognition particle receptor protein, FtsY, in protein targeting to thylakoids. FEBS Lett 1999; 447:329-33. [PMID: 10214972 DOI: 10.1016/s0014-5793(99)00305-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We isolated an Arabidopsis thaliana cDNA whose translated product shows sequence similarity to the FtsY, a bacterial homologue of SRP receptor protein. The Arabidopsis FtsY homologue contains a typical chloroplast transit peptide. The in vitro-synthesized 37 kDa FtsY homologue was imported into chloroplasts, and the processed 32 kDa polypeptide bound peripherally on the outer surface of thylakoids. Antibodies raised against the FtsY homologue also reacted with a thylakoid-bound 32 kDa protein. The antibodies inhibited the cpSRP-dependent insertion of the light-harvesting chlorophyll alb-binding protein into thylakoid membranes suggesting that the chloroplast FtsY homologue is involved in the cpSRP-dependent protein targeting to the thylakoid membranes.
Collapse
Affiliation(s)
- N Kogata
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
13
|
Ladefoged SA, Christiansen G. Mycoplasma hominis expresses two variants of a cell-surface protein, one a lipoprotein, and one not. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 3):761-770. [PMID: 9534245 DOI: 10.1099/00221287-144-3-761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A protein similar to the previously characterized variable surface-exposed membrane protein P120 was identified (P120'), establishing that Mycoplasma hominis PG21 possesses a novel gene family. The gene, p120', was sequenced and found to have some distinctive properties including a putative start codon of GTG, rather than the common ATG codon, and a coding region with a high G + C content, characteristic of essential housekeeping genes in mycoplasmas. No sequence homology was found to known proteins. The genomic locations of the p120 and p120' genes were determined on the restriction map of five M. hominis strains by PFGE. The genes were localized in two separate regions separated by more than 6 kb. Genes as well as proteins corresponding to P120' were identified in 24/24 M. hominis isolates tested and no size variation was detected. P120' had a molecular mass of 98 kDa, 20 kDa smaller than P120 as estimated by SDS-PAGE. The protein was surface-exposed and associated with the mycoplasma membrane, but had predominantly hydrophilic characteristics upon Triton X-114 extraction. The N-terminal part of P120' had a hydrophobic leader sequence without the characteristics of a prolipoprotein. This might explain the membrane association of the protein. Unlike P120, which is frequently recognized by sera of patients seropositive for M. hominis, P120' was only rarely recognized. The conserved nature of the P120 gene family indicates that it has an essential, although currently unknown, function.
Collapse
|