1
|
Hacker B, Schultheiß C, Kurzik-Dumke U. Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting in distinct cellular compartments. Hum Mol Genet 2018; 27:4231-4248. [PMID: 30192950 DOI: 10.1093/hmg/ddy315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.
Collapse
Affiliation(s)
- Benedikt Hacker
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Christoph Schultheiß
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| |
Collapse
|
2
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
3
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bhutkar A, Russo SM, Smith TF, Gelbart WM. Genome-scale analysis of positionally relocated genes. Genome Res 2007; 17:1880-7. [PMID: 17989252 DOI: 10.1101/gr.7062307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During evolution, genome reorganization includes large-scale events such as inversions, translocations, and segmental or even whole-genome duplications, as well as fine-scale events such as the relocation of individual genes. This latter category, which we will refer to as positionally relocated genes (PRGs), is the subject of this report. Assessment of the magnitude of such PRGs and of possible contributing mechanisms is aided by a comparative analysis of related genomes, where conserved chromosomal organization can aid in identifying genes that have acquired a new location in a lineage of these genomes. Here we utilize two methods to comprehensively identify relocated protein-coding genes in the recently sequenced genomes of 12 species of genus Drosophila. We use exceptions to the general rule of maintenance of chromosome arm (Muller element) association for most Drosophila genes to identify one major class of PRGs. We also identify a partially overlapping set of PRGs among "embedded genes," located within the extents of other surrounding genes. We provide evidence that PRG movements have at least two different origins: Some events occur via retrotransposition of processed RNAs and others via a DNA-based transposition mechanism. Overall, we identify several hundred PRGs that arose within a lineage of the genus Drosophila phylogeny and provide suggestive evidence that a few thousand such events have occurred within the radiation of the insect order Diptera, thereby illustrating the magnitude of the contribution of PRG movement to chromosomal reorganization during evolution.
Collapse
Affiliation(s)
- Arjun Bhutkar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
6
|
Gibson CW, Thomson NH, Abrams WR, Kirkham J. Nested genes: Biological implications and use of AFM for analysis. Gene 2005; 350:15-23. [PMID: 15780979 DOI: 10.1016/j.gene.2004.12.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/10/2004] [Accepted: 12/27/2004] [Indexed: 11/15/2022]
Abstract
A "nested" gene is located within the boundaries of a larger gene, often within an intron and in the opposite orientation. Such structures are common in bacteria and viruses, but have also been described in higher species as diverse as Drosophila and humans. Expression of nested and host genes may be simultaneously up-regulated due to use of common enhancers, or down-regulated through steric hindrance or interference caused by annealing of the complementary RNAs, leading to degradation. Methods for RNA analysis such as RT-PCR and in situ hybridization reveal the presence of specific mRNAs, but do not address regulation of expression within a single cell at a single genetic locus. Atomic force microscopy is a relatively new technology, which allows visualization of the movement of an RNA polymerase along a DNA template. The potential of this technology includes a greater molecular understanding of cellular decision making processes, leading to enhanced opportunities to intervene in disease progression through use of novel treatment modalities.
Collapse
Affiliation(s)
- Carolyn W Gibson
- University of Pennsylvania School of Dental Medicine, Department of Anatomy and Cell Biology, 240 S. 40th Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|