1
|
Abstract
The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1–XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.
Collapse
|
2
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|
3
|
The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain. DNA Repair (Amst) 2015; 37:33-42. [PMID: 26658142 DOI: 10.1016/j.dnarep.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) is a key pathway for removing DNA damage that destabilizes the DNA double helix. During NER a protein complex coordinates to cleave the damaged DNA strand on both sides of the damage. The resulting lesion-containing oligonucleotide is displaced from the DNA and a replacement strand is synthesized using the undamaged strand as template. Ultraviolet (UV) light is known to induce two primary forms of DNA damage, the cyclobutane pyrimidine dimer and the 6-4 photoproduct, both of which destabilize the DNA double helix. The uvs9 strain of Chlamydomonas reinhardtii was isolated based on its sensitivity to UV light and was subsequently shown to have a defect in NER. In this work, the UVS9 gene was cloned through molecular mapping and shown to encode a homolog of XPG, the structure-specific nuclease responsible for cleaving damaged DNA strands 3' to sites of damage during NER. 3' RACE revealed that the UVS9 transcript is alternatively polyadenylated. The predicted UVS9 protein is nearly twice as long as other XPG homologs, primarily due to an unusually long spacer region. Despite this difference, amino acid sequence alignment of UVS9p with XPG homologs revealed a new conserved domain involved in TFIIH interaction.
Collapse
|
4
|
Feltes BC, Bonatto D. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:306-20. [PMID: 25795128 DOI: 10.1016/j.mrrev.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
Abstract
The xeroderma pigmentosum complementation group proteins (XPs), which include XPA through XPG, play a critical role in coordinating and promoting global genome and transcription-coupled nucleotide excision repair (GG-NER and TC-NER, respectively) pathways in eukaryotic cells. GG-NER and TC-NER are both required for the repair of bulky DNA lesions, such as those induced by UV radiation. Mutations in genes that encode XPs lead to the clinical condition xeroderma pigmentosum (XP). Although the roles of XPs in the GG-NER/TC-NER subpathways have been extensively studied, complete knowledge of their three-dimensional structure is only beginning to emerge. Hence, this review aims to summarize the current knowledge of mapped mutations and other structural information on XP proteins that influence their function and protein-protein interactions. We also review the possible post-translational modifications for each protein and the impact of these modifications on XP protein functions.
Collapse
Affiliation(s)
- Bruno César Feltes
- Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Biotechnology Center of the Federal University of Rio Grande do Sul, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ. Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:115-27. [PMID: 15645454 DOI: 10.1002/em.20094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As obligate phototrophs, and despite shielding strategies, plants sustain DNA damage caused by UV radiation in sunlight. By inhibiting DNA replication and transcription, such damage may contribute to the detrimental effects of UV radiation on the growth, productivity, and genetic stability of higher plants. However, there is evidence that plants can reverse UV-induced DNA damage by photoreactivation or remove it via nucleotide excision repair. In addition, plants may have mechanisms for tolerating UV photoproducts as a means of avoiding replicative arrest. Recently, phenotypic characterization of plant mutants, functional complementation studies, and cDNA analysis have implicated genes isolated from the model plant Arabidopsis thaliana in nucleotide excision repair or tolerance of UV-induced DNA damage. Here, we briefly review features of these processes in human cells, collate information on Arabidopsis homologs of the relevant genes, and summarize the experimental findings that link certain of these plant genes to nucleotide excision repair or damage tolerance.
Collapse
Affiliation(s)
- Bernard A Kunz
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, Australia.
| | | | | | | |
Collapse
|
6
|
Shiomi N, Mori M, Kito S, Harada YN, Tanaka K, Shiomi T. Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair (Amst) 2005; 4:351-7. [PMID: 15661658 DOI: 10.1016/j.dnarep.2004.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2004] [Indexed: 11/26/2022]
Abstract
In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause an early onset of Cockayne syndrome (CS) in some patients (XP-G/CS) with characteristics, such as growth retardation and a short life span. In the previous studies, we generated four Xpg mutant mice with two different C-terminal truncations, null, or a base substitution mutation to identify the protein region that causes the onset of CS, and found that the CS-causing mutations, null or a deletion of the last 360 amino acids, completely inhibited the NER activity of mouse XPG (Xpg), but the non-CS-causing mutations, XpgD811A (base substitution that eliminates the nuclease activity of Xpg) or XpgDeltaex15 (deletion of the exon 15 corresponding to the last 183 amino acids), resulted in the retention of residual NER activity. To understand why mutations that completely eliminate the NER activity of Xpg cause CS but those that abolish the nuclease activity without totally eliminating the NER activity of Xpg do not result in CS, we made a series of Xpg mutant mice with Xpa-null mutant allele and found that mice with the non-CS-causing deletion mutation (XpgDeltaex15) exhibited the CS phenotype when XPA was also absent but the base substitution mutation (XpgD811A) that eliminated the Xpg nuclease activity did not. These results indicate that Xpg has a second function, beside NER, and that the disruption of this second function (deletion of the last 183 amino acids) when combined with an NER defect causes CS. When we compared amino acid sequences corresponding to the exon 15 of Xpg, a significant homology was conserved among vertebrates, but not in Drosophila and Saccharomyces cerevisiae. These observations suggest that the second function of XPG may be conserved only in vertebrates and CS symptoms may occur in its absence.
Collapse
Affiliation(s)
- Naoko Shiomi
- Research Center for Radiation Safety, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 2004; 280:7030-7. [PMID: 15590680 DOI: 10.1074/jbc.m412228200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
XPG has structural and catalytic roles in nucleotide excision repair (NER) and belongs to the FEN-1 family of structure-specific nucleases. XPG contains a stretch of over 600 amino acids termed the "spacer region" between the conserved N- and I-nuclease regions. Its role is unknown, and it is not similar to any known protein. To investigate its possible functions, we generated and analyzed several deletion mutants of XPG. The spacer region is not required for endonuclease activity, but amino acids 111-550 contribute to the substrate specificity of XPG, and they are required for interaction with TFIIH and for NER activity in vitro and in vivo. Deletion of residues 184-210 and 554-730 leads only to a partial defect in NER activity and a weakened interaction with TFIIH. XPGDelta184-210 and XPGDelta554-730 are not observed at sites of local UV damage in living cells by immunofluorescence, suggesting that the weakened interaction between XPG and TFIIH results in an NER reaction with altered kinetics. This study demonstrates that the N-terminal portion of the spacer region is particularly important for NER progression by mediating the XPG-TFIIH interaction and XPG substrate specificity.
Collapse
Affiliation(s)
- Isabelle Dunand-Sauthier
- Department of Microbiology and Molecular Medicine, University Medical Centre, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
Jassim OW, Fink JL, Cagan RL. Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J 2004; 22:5622-32. [PMID: 14532134 PMCID: PMC213797 DOI: 10.1093/emboj/cdg543] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) light is absorbed by cellular proteins and DNA, promoting skin damage, aging and cancer. In this paper, we explore the UV response by cells of the Drosophila retina. We demonstrate that the retina enters a period of heightened UV sensitivity in the young developing pupa, a stage closely associated with its period of normal developmental programmed cell death. Injury to irradiated cells included morphology changes and apoptotic cell death; these defects could be completely accounted for by DNA damage. Cell death, but not morphological changes, was blocked by the caspase inhibitor P35. Utilizing genetic and microarray data, we provide evidence for the central role of Hid expression and for Diap1 protein stability in controlling the UV response. In contrast, we found that Reaper had no effect on UV sensitivity. Surprisingly, Dmp53 is required to protect cells from UV-mediated cell death, an effect attributed to its role in DNA repair. These in vivo results demonstrate that the cellular effects of DNA damage depend on the developmental status of the tissue.
Collapse
Affiliation(s)
- Omar W Jassim
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8103, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
9
|
Liu Z, Hall JD, Mount DW. Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:329-338. [PMID: 11439121 DOI: 10.1046/j.1365-313x.2001.01031.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To identify mechanisms of DNA repair in Arabidopsis thaliana, we have analyzed a mutant (uvh3) which exhibits increased sensitivity to ultraviolet (UV) light, H2O2 and ionizing radiation and displays a premature senescence phenotype. The uvh3 locus was mapped within chromosome III to the GL1 locus. A cosmid contig of the GL1 region was constructed, and individual cosmids were used to transform uvh3 mutant plants. Cosmid N9 was found to confer UV-resistance, H2O2-resistance and a normal senescence phenotype following transformation, indicating that the UVH3 gene is located on this cosmid and that all three phenotypes are due to the same mutation. Analysis of cosmid N9 sequences identified a gene showing strong similarity to two homologous repair genes, RAD2 (Saccharomyces cerevisiae) and XPG (human), which encode an endonuclease required for nucleotide excision repair of UV-damage. The uvh3 mutant was shown to carry a nonsense mutation in the coding region of the AtRAD2/XPG gene, thus revealing that the UVH3 gene encodes the AtRAD2/XPG gene product. In humans, the homologous XPG protein is also involved in removal of oxygen-damaged nucleotides by base excision repair. We discuss the possibility that the increased sensitivity of the uvh3 mutant to H2O2 and the premature senescence phenotype might result from failure to repair oxygen damage in plant tissues. Finally, we show that the AtRAD2/XPG gene is expressed at moderate levels in all plant tissues.
Collapse
Affiliation(s)
- Z Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
10
|
Emmert S, Schneider TD, Khan SG, Kraemer KH. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res 2001; 29:1443-52. [PMID: 11266544 PMCID: PMC31292 DOI: 10.1093/nar/29.7.1443] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP-Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.
Collapse
Affiliation(s)
- S Emmert
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Building 37 Room 3E24, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Sekelsky JJ, Hollis KJ, Eimerl AI, Burtis KC, Hawley RS. Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res 2000; 459:219-28. [PMID: 10812334 DOI: 10.1016/s0921-8777(99)00075-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions flanking the lesion are catalyzed by different structure-specific endonucleases. The 5' incision is made by a heterodimer of XPF and ERCC1 (Rad1p-Rad10p in Saccharomyces cerevisiae), and the 3' incision is made by XPG (Rad2p in S. cerevisiae). We previously showed that the Drosophila XPF homologue is encoded by the meiotic recombination gene mei-9. We report here the identification of the genes encoding the XPG and ERCC1 homologues (XPG(Dm) and ERCC1(Dm)). XPG(Dm) is encoded by the mus201 gene; we found frameshift mutations predicted to produce truncated XPG(Dm) proteins in each of two mus201 alleles. These mutations cause defects in nucleotide excision repair and hypersensitivity to alkylating agents and ultraviolet light, but do not cause hypersensitivity to ionizing radiation and do not impair viability or fertility. ERCC1(Dm) interacts strongly in a yeast two-hybrid assay with MEI-9, indicative of the presumed requirement for these polypeptides to dimerize to form the functional endonuclease. The Drosophila Ercc1 gene maps to polytene region 51D1-2. The nucleotide excision repair gene mus210 maps nearby (51E-F) but is distinct from Ercc1.
Collapse
Affiliation(s)
- J J Sekelsky
- Department of Genetics, Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|