1
|
Yang J, Li A, Liu S. Structural Characteristics of Mitochondrial Genomes of Two Species of Mackerel and Phylogenetic Analysis of Scombridae Family. Biomolecules 2025; 15:555. [PMID: 40305293 PMCID: PMC12025218 DOI: 10.3390/biom15040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Scomberomorus guttatus and Scomberomorus commerson are both important marine economic fish species worldwide, with high scientific and ecological value. In this study, the complete mitochondrial genome sequences of these two species of mackerel were obtained by using next-generation sequencing technology, with total lengths of 16,562 bp and 16,594 bp, respectively. Like most teleosts, both species possess 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region D-loop. The base composition showed significant AT bias (55.1%, 53.4%) and anti-G bias (16.0%, 16.2%). In their control area, the terminal-associated sequence (TAS) was identified, and a total of three core sequences with repeated "---TACAT---ATGTA---" were found. There are typical CSB-E structures and CSB-D-like structures in the central conserved domain (CD), but no CSB-F structures have been found. Meanwhile, the CSB-2 and CSB-3 structures were identified in the conserved sequence block (CSB), but the CSB-1 structure was missing. To further investigate the phylogenetic relationships within the Scombridae family, this study conducted a comparative analysis of mitochondrial genomes from 30 Scombridae species. Phylogenetic trees encompassing 60% of the documented Scombridae species were constructed using the Neighbor-Joining (NJ) and Maximum Likelihood (ML) methods. The results revealed a close evolutionary relationship between the genus Scomber and Rastrelliger, while the genus Scomberomorus exhibited closer affinities to Thunnus, Euthynnus, and Katsuwonus. At the species level, Scomberomorus guttatus diverged earlier from Scomberomorus commerson. These findings refine and update the phylogenetic relationships among Scombridae species, providing critical molecular evidence and insights for deeper exploration of their evolutionary history and genetic affinities.
Collapse
Affiliation(s)
- Jianqi Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Tanneur I, Dervyn E, Guérin C, Kon Kam King G, Jules M, Nicolas P. The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates. Nucleic Acids Res 2025; 53:gkaf147. [PMID: 40057377 PMCID: PMC11890065 DOI: 10.1093/nar/gkaf147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.
Collapse
Affiliation(s)
- Ira Tanneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | | | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Zhou M, Wang C, Xu Z, Peng Z, He Y, Wang Y. Complete mitochondrial genome of Lepidocephalichthysberdmorei and its phylogenetic status within the family Cobitidae (Cypriniformes). Zookeys 2024; 1221:51-69. [PMID: 39703235 PMCID: PMC11653074 DOI: 10.3897/zookeys.1221.129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
In this study, the complete mitochondrial genome of Lepidocephalichthysberdmorei was first determined by the primer walking sequence method. The complete mitochondrial genome was 16,574 bp in length, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (D-loop). The gene arrangement pattern was identical to that of other teleosts. The overall base composition was 29.9% A, 28.5% T, 25.5% C, and 16.1% G, with an A+T bias of 58.4%. Furthermore, phylogenetic analyses were conducted based on 13 PCGs from the mitochondrial genomes of 18 cobitid species using with three different methods (Neighbor-joining, Maximum likelihood, and Bayesian inference). All methods consistently showed that the four species of the genus Lepidocephalichthys form a monophyletic group. This study would provide effective molecular information for the Lepidocephalichthys species as well as novel genetic marker for the study of species identification.
Collapse
Affiliation(s)
- Min Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, ChinaJianghan UniversityWuhanChina
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, ChinaInstitute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Ziyue Xu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, ChinaJianghan UniversityWuhanChina
| | - Zhicun Peng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, ChinaJianghan UniversityWuhanChina
| | - Yang He
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, ChinaJianghan UniversityWuhanChina
| | - Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, ChinaJianghan UniversityWuhanChina
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, ChinaQinghai Normal UniversityXiningChina
| |
Collapse
|
4
|
Kurmi A, Sen P, Dash M, Ray SK, Satapathy SS. Differentially used codons among essential genes in bacteria identified by machine learning-based analysis. Mol Genet Genomics 2024; 299:72. [PMID: 39060647 DOI: 10.1007/s00438-024-02163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature. Using machine learning (ML) based approaches, we have analysed Relative Synonymous Codon Usage (RSCU) values between essential and non-essential genes in Escherichia coli and thirty-four other bacterial genomes whose gene essentiality features were available in public databases. We observed significant differences in codon usage patterns between essential and non-essential genes for majority of the bacterial genomes and accordingly, ML based classifiers achieved high area under curve (AUC) scores, with a minimum score of 70.0 across twenty-eight organisms. Further, importance of the codons towards classifying genes found to differ among the codons in each genome. Arg codon CGT and Gly codon GGT were observed to be the most preferred codons among essential genes in Escherichia coli. Interestingly, some of the codons like CGT, ATA, GGT and GGG observed to be contributing consistently towards classifying essential genes across thirty-five bacteria genomes studied. In other hand, codons TGY and CAY encoding amino acids Cys and His respectively were among the least contributing codons towards classification among all these bacteria. This study demonstrates the gene essentiality based differences in synonymous codon usage in bacteria genomes and presents a common codon usage pattern across bacteria.
Collapse
Affiliation(s)
- Annushree Kurmi
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
- Department of Computer Science and Engineering, The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Piyali Sen
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
| | - Madhusmita Dash
- Department of Electronics and Communication Engineering, NIT, Jote, Arunachal Pradesh, 791113, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | | |
Collapse
|
5
|
Sun CH, Lu CH. Comparative Analysis and Phylogenetic Study of Dawkinsia filamentosa and Pethia nigrofasciata Mitochondrial Genomes. Int J Mol Sci 2024; 25:3004. [PMID: 38474250 DOI: 10.3390/ijms25053004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Smiliogastrinae are recognized for their high nutritional and ornamental value. In this study, we employed high-throughput sequencing technology to acquire the complete mitochondrial genome sequences of Dawkinsia filamentosa and Pethia nigrofasciata. The gene composition and arrangement order in these species were similar to those of typical vertebrates, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region. The mitochondrial genomes of D. filamentosa and P. nigrofasciata measure 16,598 and 16,948 bp, respectively. Both D. filamentosa and P. nigrofasciata exhibit a significant preference for AT bases and an anti-G bias. Notably, the AT and GC skew values of the ND6 gene fluctuated markedly, suggesting that the selection and mutation pressures on this gene may differ from those affecting other genes. Phylogenetic analysis, based on the complete mitochondrial genomes of 23 Cyprinidae fishes, revealed that D. filamentosa is closely related to the sister group comprising Dawkinsia denisonii and Sahyadria chalakkudiensis. Similarly, P. nigrofasciata forms a sister group with Pethia ticto and Pethia stoliczkana.
Collapse
Affiliation(s)
- Cheng-He Sun
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Chang-Hu Lu
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Yang J, Ye Y, Yi R, Bi D, Zhang S, Han S, Kan X. A new perspective on codon usage, selective pressure, and phylogenetic implications of the plastomes in the Telephium clade (Crassulaceae). Gene 2024; 892:147871. [PMID: 37797779 DOI: 10.1016/j.gene.2023.147871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The Telephium clade of the Crassulaceae family contains many medicinal, ornamental, and ecologically restorative plants. However, the phylogenetic relationships within the clade remain debated, and comprehensive analyses of codon usage and selection pressure in Telephium plastomes are limited. In this study, we assembled and annotated four plastomes and performed extensive analyses. The plastomes exhibited a typical quadripartite structure and high conservation. The lengths ranged from 151,357 bp to 151,641 bp with 134 genes identified. The GC content was the highest within IR, followed by LSC, and lowest in the SSC region. Meanwhile, a unique inversion was observed within the LSC region of Meterostachys sikokianus. Polymorphisms analysis revealed minimum nucleotide diversity in the IR regions, with over ten highly polymorphic regions identified. Phylogenetically, two subclades formed within the monophyletic Telephium clade, with Umbilicus as the sister group to the remaining Hylotelephium subclade members. Notably, no significant positive selection was found among the 79 plastid genes, which showed varying evolutionary patterns. However, 19 genes contained codons under positive selection. The specific functions of these sites require further investigation. Synonymous codon usage was biased and conserved across the tested plastomes, shaped by natural selection, mutations and other factors of varying influence. We also identified 34 taxon-specific codon aversion motifs from 49 plastid genes. Our plastomic analyses elucidate phylogenetic relationships and evolutionary patterns in this medicinal clade, providing a foundation for further research on these ecologically and pharmaceutically important plants.
Collapse
Affiliation(s)
- Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
7
|
Ding H, Gao J, Yang J, Zhang S, Han S, Yi R, Ye Y, Kan X. Genome evolution of Buchnera aphidicola (Gammaproteobacteria): Insights into strand compositional asymmetry, codon usage bias, and phylogenetic implications. Int J Biol Macromol 2023; 253:126738. [PMID: 37690648 DOI: 10.1016/j.ijbiomac.2023.126738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Taxa of Buchnera aphidicola (hereafter "Buchnera") are mutualistic intracellular symbionts of aphids, known for their remarkable biological traits such as genome reduction, strand compositional asymmetry, and symbiont-host coevolution. With the growing availability of genomic data, we performed a comprehensive analysis of 103 genomes of Buchnera strains from 12 host subfamilies, focusing on the genomic characterizations, codon usage patterns, and phylogenetic implications. Our findings revealed consistent features among all genomes, including small genome sizes, low GC contents, and gene losses. We also identified strong strand compositional asymmetries in all strains at the genome level. Further investigation suggested that mutation pressure may have played a crucial role in shaping codon usage of Buchnera. Moreover, the genomic asymmetries were reflected in asymmetric codon usage preferences within chromosomal genes. Notably, the levels of these asymmetries were varied among strains and were significantly influenced by the degrees of genome shrinkages. Lastly, our phylogenetic analyses presented an alternative topology of Aphididae, based on the Buchnera symbionts, providing robust confirmation of the paraphylies of Eriosomatinae, and Macrosiphini. Our objectives are to further understand the strand compositional asymmetry and codon usage bias of Buchnera taxa, and provide new perspectives for phylogenetic studies of Aphididae.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
8
|
Moeckel C, Zaravinos A, Georgakopoulos-Soares I. Strand asymmetries across genomic processes. Comput Struct Biotechnol J 2023; 21:2036-2047. [PMID: 36968020 PMCID: PMC10030826 DOI: 10.1016/j.csbj.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Across biological systems, a number of genomic processes, including transcription, replication, DNA repair, and transcription factor binding, display intrinsic directionalities. These directionalities are reflected in the asymmetric distribution of nucleotides, motifs, genes, transposon integration sites, and other functional elements across the two complementary strands. Strand asymmetries, including GC skews and mutational biases, have shaped the nucleotide composition of diverse organisms. The investigation of strand asymmetries often serves as a method to understand underlying biological mechanisms, including protein binding preferences, transcription factor interactions, retrotransposition, DNA damage and repair preferences, transcription-replication collisions, and mutagenesis mechanisms. Research into this subject also enables the identification of functional genomic sites, such as replication origins and transcription start sites. Improvements in our ability to detect and quantify DNA strand asymmetries will provide insights into diverse functionalities of the genome, the contribution of different mutational mechanisms in germline and somatic mutagenesis, and our knowledge of genome instability and evolution, which all have significant clinical implications in human disease, including cancer. In this review, we describe key developments that have been made across the field of genomic strand asymmetries, as well as the discovery of associated mechanisms.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Comparative Mitogenome Analyses Uncover Mitogenome Features and Phylogenetic Implications of the Parrotfishes (Perciformes: Scaridae). BIOLOGY 2023; 12:biology12030410. [PMID: 36979102 PMCID: PMC10044791 DOI: 10.3390/biology12030410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
In order to investigate the molecular evolution of mitogenomes among the family Scaridae, the complete mitogenome sequences of twelve parrotfish species were determined and compared with those of seven other parrotfish species. The comparative analysis revealed that the general features and organization of the mitogenome were similar among the 19 parrotfish species. The base composition was similar among the parrotfishes, with the exception of the genus Calotomus, which exhibited an unusual negative AT skew in the whole mitogenome. The PCGs showed similar codon usage, and all of them underwent a strong purifying selection. The gene rearrangement typical of the parrotfishes was detected, with the tRNAMet inserted between the tRNAIle and tRNAGln, and the tRNAGln was followed by a putative tRNAMet pseudogene. The parrotfish mitogenomes displayed conserved gene overlaps and secondary structure in most tRNA genes, while the non-coding intergenic spacers varied among species. Phylogenetic analysis based on the thirteen PCGs and two rRNAs strongly supported the hypothesis that the parrotfishes could be subdivided into two clades with distinct ecological adaptations. The early divergence of the sea grass and coral reef clades occurred in the late Oligocene, probably related to the expansion of sea grass habitat. Later diversification within the coral reef clade could be dated back to the Miocene, likely associated with the geomorphology alternation since the closing of the Tethys Ocean. This work provided fundamental molecular data that will be useful for species identification, conservation, and further studies on the evolution of parrotfishes.
Collapse
|
10
|
Evidence for Strand Asymmetry in Different Plastid Genomes. Genes (Basel) 2023; 14:genes14020320. [PMID: 36833247 PMCID: PMC9956171 DOI: 10.3390/genes14020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
A common genome composition pattern in eubacteria is an asymmetry between the leading and lagging strands resulting in opposite skew patterns in the two replichores that lie between the origin and terminus of replication. Although this pattern has been reported for a couple of isolated plastid genomes, it is not clear how widespread it is overall in this chromosome. Using a random walk approach, we examine plastid genomes outside of the land plants, which are excluded since they are known not to initiate replication at a single site, for such a pattern of asymmetry. Although it is not a common feature, we find that it is detectable in the plastid genome of species from several diverse lineages. The euglenozoa in particular show a strong skew pattern as do several rhodophytes. There is a weaker pattern in some chlorophytes but it is not apparent in other lineages. The ramifications of this for analyses of plastid evolution are discussed.
Collapse
|
11
|
Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications. Animals (Basel) 2022; 13:ani13010096. [PMID: 36611705 PMCID: PMC9817927 DOI: 10.3390/ani13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition, natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolutionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover, MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively. According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further evolutionary studies within Certhioidea.
Collapse
|
12
|
Sophiarani Y, Chakraborty S. Comparison of compositional constraints: Nuclear genome vs plasmid genome of Pseudomonas syringae pv. tomato DC3000. J Biosci 2022. [DOI: 10.1007/s12038-022-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Sen P, Kurmi A, Ray SK, Satapathy SS. Machine learning approach identifies prominent codons from different degenerate groups influencing gene expression in bacteria. Genes Cells 2022; 27:591-601. [DOI: 10.1111/gtc.12977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Piyali Sen
- Department of Computer Science and Engineering Tezpur University, Napaam Tezpur Assam India
| | - Annushree Kurmi
- Department of Computer Science and Engineering Tezpur University, Napaam Tezpur Assam India
| | - Suvendra Kumar Ray
- Molecular Biology and Biotechnology Tezpur University, Napaam Tezpur Assam India
| | | |
Collapse
|
14
|
Malhotra N, Seshasayee ASN. Replication-Dependent Organization Constrains Positioning of Long DNA Repeats in Bacterial Genomes. Genome Biol Evol 2022; 14:6625829. [PMID: 35776426 PMCID: PMC9297083 DOI: 10.1093/gbe/evac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial genome organization is primarily driven by chromosomal replication from a single origin of replication. However, chromosomal rearrangements, which can disrupt such organization, are inevitable in nature. Long DNA repeats are major players mediating rearrangements, large and small, via homologous recombination. Since changes to genome organization affect bacterial fitness-and more so in fast-growing than slow-growing bacteria-and are under selection, it is reasonable to expect that genomic positioning of long DNA repeats is also under selection. To test this, we identified identical DNA repeats of at least 100 base pairs across ∼6,000 bacterial genomes and compared their distribution in fast- and slow-growing bacteria. We found that long identical DNA repeats are distributed in a non-random manner across bacterial genomes. Their distribution differs in the overall number, orientation, and proximity to the origin of replication, between fast- and slow-growing bacteria. We show that their positioning-which might arise from a combination of the processes that produce repeats and selection on rearrangements that recombination between repeat elements might cause-permits less disruption to the replication-dependent genome organization of bacteria compared with random suggesting it as a major constraint to positioning of long DNA repeats.
Collapse
|
15
|
Jin YT, Pu DK, Guo HX, Deng Z, Chen LL, Guo FB. T-G-A Deficiency Pattern in Protein-Coding Genes and Its Potential Reason. Front Microbiol 2022; 13:847325. [PMID: 35602045 PMCID: PMC9116502 DOI: 10.3389/fmicb.2022.847325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
If a stop codon appears within one gene, then its translation will be terminated earlier than expected. False folding of premature protein will be adverse to the host; hence, all functional genes would tend to avoid the intragenic stop codons. Therefore, we hypothesize that there will be less frequency of nucleotides corresponding to stop codons at each codon position of genes. Here, we validate this inference by investigating the nucleotide frequency at a large scale and results from 19,911 prokaryote genomes revealed that nucleotides coinciding with stop codons indeed have the lowest frequency in most genomes. Interestingly, genes with three types of stop codons all tend to follow a T-G-A deficiency pattern, suggesting that the property of avoiding intragenic termination pressure is the same and the major stop codon TGA plays a dominant role in this effect. Finally, a positive correlation between the TGA deficiency extent and the base length was observed in start-experimentally verified genes of Escherichia coli (E. coli). This strengthens the proof of our hypothesis. The T-G-A deficiency pattern observed would help to understand the evolution of codon usage tactics in extant organisms.
Collapse
Affiliation(s)
- Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Dong-Kai Pu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Xia Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixin Deng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ling-Ling Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Feng-Biao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Hubert B. SkewDB, a comprehensive database of GC and 10 other skews for over 30,000 chromosomes and plasmids. Sci Data 2022; 9:92. [PMID: 35318332 PMCID: PMC8941118 DOI: 10.1038/s41597-022-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
GC skew denotes the relative excess of G nucleotides over C nucleotides on the leading versus the lagging replication strand of eubacteria. While the effect is small, typically around 2.5%, it is robust and pervasive. GC skew and the analogous TA skew are a localized deviation from Chargaff’s second parity rule, which states that G and C, and T and A occur with (mostly) equal frequency even within a strand. Different bacterial phyla show different kinds of skew, and differing relations between TA and GC skew. This article introduces an open access database (https://skewdb.org) of GC and 10 other skews for over 30,000 chromosomes and plasmids. Further details like codon bias, strand bias, strand lengths and taxonomic data are also included. The SkewDB can be used to generate or verify hypotheses. Since the origins of both the second parity rule and GC skew itself are not yet satisfactorily explained, such a database may enhance our understanding of prokaryotic DNA. Measurement(s) | Imbalances in the use of DNA nucleotides | Technology Type(s) | Next Generation Sequencing | Factor Type(s) | Position within DNA sequence • Organism type | Sample Characteristic - Organism | bacterium • archaea | Sample Characteristic - Environment | Varying | Sample Characteristic - Location | World |
Collapse
Affiliation(s)
- Bert Hubert
- AHU Holding Research, Nootdorp, Netherlands.
| |
Collapse
|
17
|
Abstract
The phylum "Candidatus Omnitrophica" (candidate division OP3) is ubiquitous in anaerobic habitats but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiotic cells. In this study, we enriched OP3 cells by double density gradient centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population by applying metagenomics and PCR for gap closure. Filaments of acetoclastic Methanosaeta, the largest morphotype in the culture community, contained empty cells, cells devoid of rRNA or of both rRNA and DNA, and dead cells according to transmission electron microscopy (TEM), thin-section TEM, scanning electron microscopy (SEM), catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), and LIVE/DEAD imaging. OP3 LiM cells were ultramicrobacteria (200 to 300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals of OP3 LiM cells attached to Bacteria and to Archaea indicated many rRNA molecules and an active metabolism, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules and an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an Rnf complex (ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin-section TEM showed distinctive structures of predation. Our study demonstrated a predatory metabolism for OP3 LiM cells, and therefore, we propose the name "Candidatus Velamenicoccus archaeovorus" gen. nov., sp. nov., for OP3 LiM. IMPORTANCE Epibiotic bacteria are known to live on and off bacterial cells. Here, we describe the ultramicrobacterial anaerobic epibiont OP3 LiM living on Archaea and Bacteria. We detected sick and dead cells of the filamentous archaeon Methanosaeta in slowly growing methanogenic cultures. OP3 LiM lives as a sugar fermenter, likely on polysaccharides from outer membranes, and has the genomic potential to live as a syntroph. The predatory lifestyle of OP3 LiM was supported by its genome, the first closed genome for the phylum "Candidatus Omnitrophica," and by images of cell-to-cell contact with prey cells. We propose naming OP3 LiM "Candidatus Velamenicoccus archaeovorus." Its metabolic versatility explains the ubiquitous presence of "Candidatus Omnitrophica" 3 in anoxic habitats and gives ultramicrobacterial epibionts an important role in the recycling and remineralization of microbial biomass. The removal of polysaccharides from outer membranes by ultramicrobacteria may also influence biological interactions between pro- and eukaryotes.
Collapse
|
18
|
Chakraborty S, Sophiarani Y, Uddin A. Free energy of mRNA positively correlates with GC content in chloroplast transcriptomes of edible legumes. Genomics 2021; 113:2826-2838. [PMID: 34147635 DOI: 10.1016/j.ygeno.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/01/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
In the present study, the results of nucleotide composition analysis showed that the legume chloroplast (cp) transcriptomes were AT rich. From the neutrality plot, we observed that natural selection might have played a major role, while mutation pressure played a minor role in the CUB of cp transcriptomes. Highly significant (p < 0.05) negative correlation was found between mRNA free energy (mFE) and scaled chi-square for entire mRNA in Cicer arietinum and Lens culinaris suggesting that the release of higher energy by entire mRNA molecule might be associated with higher degree of codon usage bias in these two crop plants. Further, highly significant (p < 0.01, p < 0.05) positive correlation of mFE for entire mRNA was found with GC3 and that of mFE for 39 bases with GC, GC1, GC2 and GC3 contents among all the legumes. This indicated that higher GC content might induce the release of more free energy by cp transcriptomes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | | | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, India
| |
Collapse
|
19
|
Yang J, Ding H, Kan X. Codon usage patterns and evolution of HSP60 in birds. Int J Biol Macromol 2021; 183:1002-1012. [PMID: 33971236 DOI: 10.1016/j.ijbiomac.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein 60 (HSP60) is highly conserved from prokaryotic to eukaryotic organisms, acting as molecular chaperone and other vital biological functions. In spite of increasing knowledge of HSP60, its evolutionary mechanism on functional adaption is still far from completely understood. Moreover, analysis of codon usage bias (CUB) is a powerful tool to understand evolutionary association studies. However, so far, as we know, no scientific work on CUB of HSP60 in birds has been reported. In this study, we provide a comprehensive analysis on the codon usage and molecular evolution of HSP60 across birds. The results indicated that HSP60 had a weak codon usage bias with high ENC values (range from 52.66 to 61), low RSCU, and A/T-ending codons were mostly preferred. Meanwhile, it was considered that mutation, natural selection, and genetic drift combined to shape codon usage patterns with different strength proportions among various birds for HSP60. Then, the LRT tests suggested that different lineages of birds might be under similar selective pressures. Besides, the two positive selection sites (151 and 131) were detected and might undergo radical changes. These findings would contribute to understand function diversity and molecular evolution of HSP60 in birds.
Collapse
Affiliation(s)
- Jianke Yang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China.
| |
Collapse
|
20
|
Sun Y, Daffe G, Zhang Y, Pons J, Qiu JW, Kupriyanova EK. Another blow to the conserved gene order in Annelida: Evidence from mitochondrial genomes of the calcareous tubeworm genus Hydroides. Mol Phylogenet Evol 2021; 160:107124. [PMID: 33610649 DOI: 10.1016/j.ympev.2021.107124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Mitochondrial genomes are frequently applied in phylogenetic and evolutionary studies across metazoans, yet they are still poorly represented in many groups of invertebrates, including annelids. Here, we report ten mitochondrial genomes from the annelid genus Hydroides (Serpulidae) and compare them with all available annelid mitogenomes. We detected all 13 protein coding genes in Hydroides spp., including the atp8 which was reported as a missing gene in the Christmas Tree worm Spirobranchus giganteus, another annelid of the family Serpulidae. All available mitochondrial genomes of Hydroides show a highly positive GC skew combined with a highly negative AT skew - a feature consistent with that found only in the mitogenome of S. giganteus. In addition, amino acid sequences of the 13 protein-coding genes showed a high genetic distance between the Hydroides clade and S. giganteus, suggesting a fast rate of mitochondrial sequence evolution in Serpulidae. The gene order of protein-coding genes within Hydroides exhibited extensive rearrangements at species level, and were different from the arrangement patterns of other annelids, including S. giganteus. Phylogenetic analyses based on protein-coding genes recovered Hydroides as a monophyletic group sister to Spirobranchus with a long branch, and sister to the fan worm Sabellidae. Yet the Serpulidae + Sabellidae clade was unexpectedly grouped with Sipuncula, suggesting that mitochondrial genomes alone are insufficient to resolve the phylogenetic position of Serpulidae within Annelida due to its high base substitution rates. Overall, our study revealed a high variability in the gene order arrangement of mitochondrial genomes within Serpulidae, provided evidence to question the conserved pattern of the mitochondrial gene order in Annelida and called for caution when applying mitochondrial genes to infer their phylogenetic relationships.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong; Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Guillemine Daffe
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia; Universite de Bordeaux, CNRS, INRAE, La Rochelle Universite, UMS 2567 POREA, 33615 Pessac, France
| | - Yanjie Zhang
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong
| | - Joan Pons
- Diversidad Animal y Microbiana, Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Esporles, Balearic Islands, Spain
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, 224 Waterloo Road, Hong Kong
| | - Elena K Kupriyanova
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia; Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
21
|
The Compact Macronuclear Genome of the Ciliate Halteria grandinella: A Transcriptome-Like Genome with 23,000 Nanochromosomes. mBio 2021; 12:mBio.01964-20. [PMID: 33500338 PMCID: PMC7858049 DOI: 10.1128/mbio.01964-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. This challenges our usual understanding of chromosomal structure and suggests the possibility of novel mechvanisms in transcriptional regulation. Comprehensive analysis of multiple data sets reveals that Halteria transcription dynamics are influenced by: (i) nonuniform nanochromosome copy numbers correlated with gene-expression level; (ii) dynamic alterations at both the DNA and RNA levels, including alternative internal eliminated sequence (IES) deletions during macronucleus formation and large-scale alternative splicing in transcript maturation; and (iii) extremely short 5′ and 3′ untranslated regions (UTRs) and universal TATA box-like motifs in the compact 5′ subtelomeric regions of most chromosomes. This study broadens the view of ciliate biology and the evolution of unicellular eukaryotes, and identifies Halteria as one of the most compact known eukaryotic genomes, indicating that complex cell structure does not require complex gene architecture.
Collapse
|
22
|
Yang J, Gu J, Hu Y, Wang N, Gao J, Wang P. Molecular cloning and characterization of HSP60 gene in domestic pigeons (Columba livia) and differential expression patterns under temperature stress. Cell Stress Chaperones 2021; 26:115-127. [PMID: 32880058 PMCID: PMC7736444 DOI: 10.1007/s12192-020-01160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 60 (HSP60) is a well-recognized multifunctional protein, playing a substantial role in protecting organisms from environmental stress. The domestic pigeon (Columba livia) is a promising model organism, with important economic and ecological value, and its health is susceptible to temperature stress. To explore the molecular characteristics, tissue expression profile, and response to temperature stress for HSP60 of Columba livia (ClHSP60), we firstly cloned and characterized the complete cDNA sequence and investigated its expression profile under optimal conditions and acute temperature stress. The cDNA of ClHSP60 contained 2257 nucleotides, consisting of 12 exons with length ranging from 65 to 590 bp. The open reading frame (ORF) encoded 573 amino acids with calculated molecular weight of 60.97 kDa that contained a number of structurally prominent domains or motifs. Under optimal temperature conditions, levels of ClHSP60 expression differed between all the tested tissues (the highest was noted in liver and the lowest in pectoralis major muscle). Under acute temperature stress, five patterns of change were detected in the tested tissues, suggesting that different tissues in domestic pigeons differentially responded to various temperature stress conditions. Upregulation of ClHSP60 expression was highest in the lung and pectoralis major muscle, reflecting the crucial role of these two tissues in temperature regulation. However, the crop, cerebrum, and heart showed little change or decreased ClHSP60 expression. The results indicate that ClHSP60 may be sensitive to and play pivotal roles in responding to acute temperature stress.
Collapse
Affiliation(s)
- Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Juan Gu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
- School of pharmacy, Wannan Medical College, Wuhu, 241001, China
| | - Yuqing Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Nan Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Jiguang Gao
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
23
|
Lu J, Salzberg SL. SkewIT: The Skew Index Test for large-scale GC Skew analysis of bacterial genomes. PLoS Comput Biol 2020; 16:e1008439. [PMID: 33275607 PMCID: PMC7717575 DOI: 10.1371/journal.pcbi.1008439] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
GC skew is a phenomenon observed in many bacterial genomes, wherein the two replication strands of the same chromosome contain different proportions of guanine and cytosine nucleotides. Here we demonstrate that this phenomenon, which was first discovered in the mid-1990s, can be used today as an analysis tool for the 15,000+ complete bacterial genomes in NCBI's Refseq library. In order to analyze all 15,000+ genomes, we introduce a new method, SkewIT (Skew Index Test), that calculates a single metric representing the degree of GC skew for a genome. Using this metric, we demonstrate how GC skew patterns are conserved within certain bacterial phyla, e.g. Firmicutes, but show different patterns in other phylogenetic groups such as Actinobacteria. We also discovered that outlier values of SkewIT highlight potential bacterial mis-assemblies. Using our newly defined metric, we identify multiple mis-assembled chromosomal sequences in previously published complete bacterial genomes. We provide a SkewIT web app https://jenniferlu717.shinyapps.io/SkewIT/ that calculates SkewI for any user-provided bacterial sequence. The web app also provides an interactive interface for the data generated in this paper, allowing users to further investigate the SkewI values and thresholds of the Refseq-97 complete bacterial genomes. Individual scripts for analysis of bacterial genomes are provided in the following repository: https://github.com/jenniferlu717/SkewIT.
Collapse
Affiliation(s)
- Jennifer Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- * E-mail:
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
24
|
Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species : Codon usage of chloroplast genes in Oryza species. PLANTA 2020; 252:67. [PMID: 32989601 DOI: 10.1007/s00425-020-03470-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
The codon usage bias in chloroplast genes of Oryza species was low and AT rich. The pattern of codon usage was different among Oryza species and mainly influenced by mutation pressure and natural selection. Codon usage bias (CUB) is the unequal usage of synonymous codons in which some codons are more preferred to others in the coding sequences of genes. It shows a species-specific property. We studied the patterns of codon usage and the factors that influenced the CUB of protein-coding chloroplast (cp) genes in 18 Oryza species as no work was yet reported. The nucleotide composition analysis revealed that the overall GC content of cp genes in different species of Oryza was lower than 50%, i.e., Oryza cp genes were AT rich. Synonymous codon usage order (SCUO) suggested that CUB was weak in the cp genes of different Oryza species. A highly significant correlation was observed between overall nucleotides and its constituents at the third codon position suggesting that both, mutation pressure and natural selection, might influence the CUB. Correspondence analysis (COA) revealed that codon usage pattern differed across Oryza species. In the neutrality plot, a narrow range of GC3 distribution was recorded and some points were diagonally distributed in all the plots, suggesting that natural selection and mutation pressure might have influenced the CUB. The slope of the regression line was < 0.5, augmenting our inference that natural selection might have played a major role, while mutation pressure had a minor role in shaping the CUB of cp genes. The magnitudes of mutation pressure and natural selection on cp genes varied across Oryza species.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Sophiarani Yengkhom
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| |
Collapse
|
25
|
Subramanian H, Gatenby RA. Evolutionary advantage of anti-parallel strand orientation of duplex DNA. Sci Rep 2020; 10:9883. [PMID: 32555277 PMCID: PMC7303137 DOI: 10.1038/s41598-020-66705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022] Open
Abstract
DNA in all living systems shares common properties that are remarkably well suited to its function, suggesting refinement by evolution. However, DNA also shares some counter-intuitive properties which confer no obvious benefit, such as strand directionality and anti-parallel strand orientation, which together result in the complicated lagging strand replication. The evolutionary dynamics that led to these properties of DNA remain unknown but their universality suggests that they confer as yet unknown selective advantage to DNA. In this article, we identify an evolutionary advantage of anti-parallel strand orientation of duplex DNA, within a given set of plausible premises. The advantage stems from the increased rate of replication, achieved by dividing the DNA into predictable, independently and simultaneously replicating segments, as opposed to sequentially replicating the entire DNA, thereby parallelizing the replication process. We show that anti-parallel strand orientation is essential for such a replicative organization of DNA, given our premises, the most important of which is the assumption of the presence of sequence-dependent asymmetric cooperativity in DNA.
Collapse
Affiliation(s)
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902, USF Magnolia Dr, Tampa, Florida, USA
| |
Collapse
|
26
|
Whole mitochondrial genome of long-clawed mole vole (Prometheomys schaposchnikowi) from Turkey, with its phylogenetic relationships. Genomics 2020; 112:3247-3255. [PMID: 32512144 DOI: 10.1016/j.ygeno.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022]
Abstract
The mitogenome of Prometheomys schaposchnikowi was characterized for the first time as a circular DNA molecule (16.284 bp), containing 37 coding and 2 non-coding regions. In the mitogenome, ND6 and 8 tRNA genes were encoded on the light chain, while 12 PCGs, 14 tRNAs, 2 rRNAs, D-loop and OL were encoded on the heavy chain. The most common initiation codon in PCGs was ATG. As in many mammals, incomplete stop codons in P. schaposchnikowi were in the COX3, ND1 and ND4. Phylogenetic relationships were revealed using Bayesian method and the 13 PCGs. Seven genera (Arvicola, Dicrostonyx, Lasiopodomys, Myodes, Ondatra, Proedromys and Prometheomys) formed a monophyletic group, while Eothenomys, Microtus and Neodon were paraphyletic. P. schaposchnikowi constituted the most basal group within Arvicolinae. Divergence time estimation suggested that P. schaposchnikowi diversified during the Miocene (16.28 Mya). Further molecular studies are needed to test the distinctiveness and diversity of the genus Prometheomys.
Collapse
|
27
|
Pawliszak T, Chua M, Leung CK, Tremblay-Savard O. Operon-based approach for the inference of rRNA and tRNA evolutionary histories in bacteria. BMC Genomics 2020; 21:252. [PMID: 32299351 PMCID: PMC7160887 DOI: 10.1186/s12864-020-6612-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background In bacterial genomes, rRNA and tRNA genes are often organized into operons, i.e. segments of closely located genes that share a single promoter and are transcribed as a single unit. Analyzing how these genes and operons evolve can help us understand what are the most common evolutionary events affecting them and give us a better picture of ancestral codon usage and protein synthesis. Results We introduce BOPAL, a new approach for the inference of evolutionary histories of rRNA and tRNA genes in bacteria, which is based on the identification of orthologous operons. Since operons can move around in the genome but are rarely transformed (e.g. rarely broken into different parts), this approach allows for a better inference of orthologous genes in genomes that have been affected by many rearrangements, which in turn helps with the inference of more realistic evolutionary scenarios and ancestors. Conclusions From our comparisons of BOPAL with other gene order alignment programs using simulated data, we have found that BOPAL infers evolutionary events and ancestral gene orders more accurately than other methods based on alignments. An analysis of 12 Bacillus genomes also showed that BOPAL performs just as well as other programs at building ancestral histories in a minimal amount of events.
Collapse
Affiliation(s)
- Tomasz Pawliszak
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | - Meghan Chua
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | - Carson K Leung
- Department of Computer Science, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
28
|
Abstract
While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts. ABBREVIATIONS NGS: next-generation sequencing; Repli-seq: replication sequencing; BrdU: 5-bromo-2'-deoxyuridine; TK: thymidine kinase; GCSI: GC skew index; PET: photosynthetic electron transport; RET: respiration electron transport; Cyt b6f complex: cytochrome b6f complex; PQ: plastoquinone; PC: plastocyanin.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
29
|
Kivisaar M. Mutation and Recombination Rates Vary Across Bacterial Chromosome. Microorganisms 2019; 8:microorganisms8010025. [PMID: 31877811 PMCID: PMC7023495 DOI: 10.3390/microorganisms8010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteria evolve as a result of mutations and acquisition of foreign DNA by recombination processes. A growing body of evidence suggests that mutation and recombination rates are not constant across the bacterial chromosome. Bacterial chromosomal DNA is organized into a compact nucleoid structure which is established by binding of the nucleoid-associated proteins (NAPs) and other proteins. This review gives an overview of recent findings indicating that the mutagenic and recombination processes in bacteria vary at different chromosomal positions. Involvement of NAPs and other possible mechanisms in these regional differences are discussed. Variations in mutation and recombination rates across the bacterial chromosome may have implications in the evolution of bacteria.
Collapse
Affiliation(s)
- Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
30
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|
31
|
Liu B, Chen S, Yan K, Weng F. iRO-PsekGCC: Identify DNA Replication Origins Based on Pseudo k-Tuple GC Composition. Front Genet 2019; 10:842. [PMID: 31620165 PMCID: PMC6759546 DOI: 10.3389/fgene.2019.00842] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/13/2019] [Indexed: 11/22/2022] Open
Abstract
Identification of replication origins is playing a key role in understanding the mechanism of DNA replication. This task is of great significance in DNA sequence analysis. Because of its importance, some computational approaches have been introduced. Among these predictors, the iRO-3wPseKNC predictor is the first discriminative method that is able to correctly identify the entire replication origins. For further improving its predictive performance, we proposed the Pseudo k-tuple GC Composition (PsekGCC) approach to capture the "GC asymmetry bias" of yeast species by considering both the GC skew and the sequence order effects of k-tuple GC Composition (k-GCC) in this study. Based on PseKGCC, we proposed a new predictor called iRO-PsekGCC to identify the DNA replication origins. Rigorous jackknife test on two yeast species benchmark datasets (Saccharomyces cerevisiae, Pichia pastoris) indicated that iRO-PsekGCC outperformed iRO-3wPseKNC. It can be anticipated that iRO-PsekGCC will be a useful tool for DNA replication origin identification. Availability and implementation: The web-server for the iRO-PsekGCC predictor was established, and it can be accessed at http://bliulab.net/iRO-PsekGCC/.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Shengyu Chen
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Ke Yan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Fan Weng
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
32
|
Barbhuiya PA, Uddin A, Chakraborty S. Genome‐wide comparison of codon usage dynamics in mitochondrial genes across different species of amphibian genus
Bombina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:99-112. [DOI: 10.1002/jez.b.22852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023]
Affiliation(s)
| | - Arif Uddin
- Department of ZoologyMoinul Hoque Choudhury Memorial Science CollegeHailakandi Assam India
| | | |
Collapse
|
33
|
Bukovska G, Ugorcakova J, Halgasova N, Bocanova L, Tkacova A. The BFK20 phage replication origin confers a phage-encoded resistance phenotype to the industrial strain Brevibacterium flavum. FEMS Microbiol Lett 2019; 366:5480461. [DOI: 10.1093/femsle/fnz090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Jana Ugorcakova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Adela Tkacova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
34
|
Gram-Positive Bacteria-Like DNA Binding Machineries Involved in Replication Initiation and Termination Mechanisms of Mimivirus. Viruses 2019; 11:v11030267. [PMID: 30884919 PMCID: PMC6466248 DOI: 10.3390/v11030267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023] Open
Abstract
The detailed mechanisms of replication initiation, termination and segregation events were not yet known in Acanthamoeba polyphaga mimivirus (APMV). Here, we show detailed bioinformatics-based analyses of chromosomal replication in APMV from initiation to termination mediated by proteins bound to specific DNA sequences. Using GC/AT skew and coding sequence skew analysis, we estimated that the replication origin is located at 382 kb in the APMV genome. We performed homology-modeling analysis of the gamma domain of APMV-FtsK (DNA translocase coordinating chromosome segregation) related to FtsK-orienting polar sequences (KOPS) binding, suggesting that there was an insertion in the gamma domain which maintains the structure of the DNA binding motif. Furthermore, UvrD/Rep-like helicase in APMV was homologous to Bacillus subtilis AddA, while the chi-like quartet sequence 5′-CCGC-3′ was frequently found in the estimated ori region, suggesting that chromosomal replication of APMV is initiated via chi-like sequence recognition by UvrD/Rep-like helicase. Therefore, the replication initiation, termination and segregation of APMV are presumably mediated by DNA repair machineries derived from gram-positive bacteria. Moreover, the other frequently observed quartet sequence 5′-CGGC-3′ in the ori region was homologous to the mitochondrial signal sequence of replication initiation, while the comparison of quartet sequence composition in APMV/Rickettsia-genome showed significantly similar values, suggesting that APMV also conserves the mitochondrial replication system acquired from an ancestral genome of mitochondria during eukaryogenesis.
Collapse
|
35
|
Bose D, Mukhopadhyay S. Comparative genomics of a few members of the family Aquificaceae on the basis of their codon usage profile. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Yu P, Zhou L, Zhou XY, Yang WT, Zhang J, Zhang XJ, Wang Y, Gui JF. Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes. Int J Biol Macromol 2019; 129:339-350. [PMID: 30738158 DOI: 10.1016/j.ijbiomac.2019.01.200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Sinorhodeus microlepis (S. microlepis) is recently described as a new species and represents a new genus Sinorhodeu of the subfamily Acheilognathinae. In this study, we first sequenced the complete mitogenome of S. microlepis and compared with the other 29 bitterling mitogenomes. The S. microlepis mitogenome is 16,591 bp in length and contains 37 genes. Gene distribution pattern is identical among 30 bitterling mitogenomes. A significant linear correlation between A+T% and AT-skew were found among 29 bitterling mitogenomes, except S. microlepis shows unusual AT-skew with slightly negative in tRNAs and PCGs. Bitterling mitogenomes exhibit highly conserved usage bias of start codon, relative synonymous codons and amino acids, overlaps and non-coding intergenic spacers. Phylogenetic trees constructed by 13 PCGs strongly support the polyphyly of the genus Acheilognathus and the paraphyly of Rhodeus and Tanakia. Together with the unusual characters of S. microlepis mitogenomes and phylogenetic trees, S. microlepis should be a sister species to the genus Rhodeu that might diverge about 13.69 Ma (95% HPD: 12.96-14.48 Ma).
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ya Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wen-Tao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Xu D, Bechtner J, Behr J, Eisenbach L, Geißler AJ, Vogel RF. Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization. Int J Food Microbiol 2019; 290:141-149. [DOI: 10.1016/j.ijfoodmicro.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
|
38
|
Merino N, Zhang S, Tomita M, Suzuki H. Comparative genomics of Bacteria commonly identified in the built environment. BMC Genomics 2019; 20:92. [PMID: 30691394 PMCID: PMC6350394 DOI: 10.1186/s12864-018-5389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. RESULTS Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." CONCLUSION Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Department of Earth Sciences, University of Southern California, Stauffer Hall of Science, Los Angeles, CA, 90089, USA
| | - Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, 90089-0641, USA
| | - Masaru Tomita
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. .,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan.
| |
Collapse
|
39
|
Kono N, Tomita M, Arakawa K. Accelerated Laboratory Evolution Reveals the Influence of Replication on the GC Skew in Escherichia coli. Genome Biol Evol 2018; 10:3110-3117. [PMID: 30371772 PMCID: PMC6263442 DOI: 10.1093/gbe/evy237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Most bacterial genomes display contrasting strand asymmetry in a variety of features, such as nucleotide composition and gene orientation, of the two replichores separated by the replication origin and terminus. The cause for the polarization is often attributed to mutations arising from the asymmetric replication machinery. Notably, a base compositional bias known as a GC skew is focused on as a footprint of the bacterial genome evolution driven by DNA replication. Previously, although a replication driven mutation pattern responsible for the GC skew formation or the related mathematical models have been well reported, an exact impact of the replication-related elements on the genomic structure is yet actively debated, and not confirmed experimentally. However, the GC skew formation is very time consuming and challenging in the laboratory. We, therefore, used cytosine deaminase as a DNA mutator, and by monitoring the mutations during an accelerated laboratory evolution procedure with Illumina sequencing, we enabled the trial and error of the GC skew formation in high resolution. Using this technology, we succeeded in reconfirming the influence of bacterial replication machinery on the genomic structure at high resolution.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University
| | | | | |
Collapse
|
40
|
Khan MF, Patra S. Deciphering the rationale behind specific codon usage pattern in extremophiles. Sci Rep 2018; 8:15548. [PMID: 30341344 PMCID: PMC6195531 DOI: 10.1038/s41598-018-33476-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
Protein stability is affected at different hierarchies – gene, RNA, amino acid sequence and structure. Gene is the first level which contributes via varying codon compositions. Codon selectivity of an organism differs with normal and extremophilic milieu. The present work attempts at detailing the codon usage pattern of six extremophilic classes and their harmony. Homologous gene datasets of thermophile-mesophile, psychrophile-mesophile, thermophile-psychrophile, acidophile-alkaliphile, halophile-nonhalophile and barophile-nonbarophile were analysed for filtering statistically significant attributes. Relative abundance analysis, 1–9 scale ranking, nucleotide compositions, attribute weighting and machine learning algorithms were employed to arrive at findings. AGG in thermophiles and barophiles, CAA in mesophiles and psychrophiles, TGG in acidophiles, GAG in alkaliphiles and GAC in halophiles had highest preference. Preference of GC-rich and G/C-ending codons were observed in halophiles and barophiles whereas, a decreasing trend was reflected in psychrophiles and alkaliphiles. GC-rich codons were found to decrease and G/C-ending codons increased in thermophiles whereas, acidophiles showed equal contents of GC-rich and G/C-ending codons. Codon usage patterns exhibited harmony among different extremophiles and has been detailed. However, the codon attribute preferences and their selectivity of extremophiles varied in comparison to non-extremophiles. The finding can be instrumental in codon optimization application for heterologous expression of extremophilic proteins.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
41
|
Zheng W, Wang C, Yan Y, Gao F, Doak TG, Song W. Insights into an Extensively Fragmented Eukaryotic Genome: De Novo Genome Sequencing of the Multinuclear Ciliate Uroleptopsis citrina. Genome Biol Evol 2018; 10:883-894. [PMID: 29608728 PMCID: PMC5863220 DOI: 10.1093/gbe/evy055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 02/04/2023] Open
Abstract
Ciliated protists are a large group of single-celled eukaryotes with separate germline and somatic nuclei in each cell. The somatic genome is developed from the zygotic nucleus through a series of chromosomal rearrangements, including fragmentation, DNA elimination, de novo telomere addition, and DNA amplification. This unique feature makes them perfect models for research in genome biology and evolution. However, genomic research of ciliates has been limited to a few species, owing to problems with DNA contamination and obstacles in cultivation. Here, we introduce a method combining telomere-primer PCR amplification and high-throughput sequencing, which can reduce DNA contamination and obtain genomic data efficiently. Based on this method, we report a draft somatic genome of a multimacronuclear ciliate, Uroleptopsis citrina. 1) The telomeric sequence in U. citrina is confirmed to be C4A4C4A4C4 by directly blunt-end cloning. 2) Genomic analysis of the resulting chromosomes shows a "one-gene one-chromosome" pattern, with a small number of multiple-gene chromosomes. 3) Amino acid usage is analyzed, and reassignment of stop codons is confirmed. 4) Chromosomal analysis shows an obvious asymmetrical GC skew and high bias between A and T in the subtelomeric regions of the sense-strand, with the detection of an 11-bp high AT motif region in the 3' subtelomeric region. 5) The subtelomeric sequence also has an obvious 40 nt strand oscillation of nucleotide ratio. 6) In the 5' subtelomeric region of the coding strand, the distribution of potential TATA-box regions is illustrated, which accumulate between 30 and 50 nt. This work provides a valuable reference for genomic research and furthers our understanding of the dynamic nature of unicellular eukaryotic genomes.
Collapse
Affiliation(s)
- Weibo Zheng
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Chundi Wang
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ying Yan
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Feng Gao
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Weibo Song
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Liu B, Weng F, Huang DS, Chou KC. iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC. Bioinformatics 2018; 34:3086-3093. [DOI: 10.1093/bioinformatics/bty312] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
- Gordon Life Science Institute, Belmont, MA, USA
| | - Fan Weng
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Belmont, MA, USA
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
43
|
Bergman J, Betancourt AJ, Vogl C. Transcription-Associated Compositional Skews in Drosophila Genes. Genome Biol Evol 2018; 10:269-275. [PMID: 29036491 PMCID: PMC5786239 DOI: 10.1093/gbe/evx200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
In many organisms, local deviations from Chargaff's second parity rule are observed around replication and transcription start sites and within intron sequences. Here, we use expression data as well as a whole-genome data set of nearly 200 haplotypes to investigate such compositional skews in Drosophila melanogaster genes. We find a positive correlation between compositional skew and gene expression, comparable in strength to similar correlations between expression levels and genome-wide sequence features. This correlation is relatively stronger for germline, compared with somatic expression, consistent with the process of transcription-associated mutation bias. We also inferred mutation rates from alleles segregating at low frequencies in short introns, and show that, whereas the overall GC content of short introns does not conform to the equilibrium expectation, the level of the observed deviation from the second parity rule is generally consistent with the inferred rates.
Collapse
Affiliation(s)
- Juraj Bergman
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Wien, Austria
| | - Andrea J Betancourt
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
- Present address: Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Claus Vogl
- Institut für Tierzucht und Genetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
44
|
Arakawa K, Tomita M. The GC Skew Index: A Measure of Genomic Compositional Asymmetry and the Degree of Replicational Selection. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Circular bacterial chromosomes have highly polarized nucleotide composition in the two replichores, and this genomic strand asymmetry can be visualized using GC skew graphs. Here we propose and discuss the GC skew index (GCSI) for the quantification of genomic compositional skew, which combines a normalized measure of fast Fourier transform to capture the shape of the skew graph and Euclidean distance between the two vertices in a cumulative skew graph to represent the degree of skew. We calculated GCSI for all available bacterial genomes, and GCSI correlated well with the visibility of GC skew. This novel index is useful for estimating confidence levels for the prediction of replication origin and terminus by methods based on GC skew and for measuring the strength of replicational selection in a genome.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|
45
|
Arakawa K, Tomita M. Selection Effects on the Positioning of Genes and Gene Structures from the Interplay of Replication and Transcription in Bacterial Genomes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial chromosomes are partly shaped by the functional requirements for efficient replication, which lead to strand bias as commonly characterized by the excess of guanines over cytosines in the leading strand. Gene structures are also highly organized within bacterial genomes as a result of such functional constraints, displaying characteristic positioning and structuring along the genome. Here we analyze the gene structures in completely sequenced bacterial chromosomes to observe the positional constraints on gene orientation, length, and codon usage with regard to the positions of replication origin and terminus. Selection on these gene features is different in regions surrounding the terminus of replication from the rest of the genome, but the selection could be either positive or negative depending on the species, and these positional effects are partly attributed to the A-T enrichment near the terminus. Characteristic gene structuring relative to the position of replication origin and terminus is commonly observed among most bacterial species with circular chromosomes, and therefore we argue that the highly organized gene positioning as well as the strand bias should be considered for genomics studies of bacteria.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|
46
|
|
47
|
Błażej P, Mackiewicz D, Grabińska M, Wnętrzak M, Mackiewicz P. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Sci Rep 2017; 7:1061. [PMID: 28432324 PMCID: PMC5430830 DOI: 10.1038/s41598-017-01130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mutations are considered a spontaneous and random process, which is important component of evolution because it generates genetic variation. On the other hand, mutations are deleterious leading to non-functional genes and energetically costly repairs. Therefore, one can expect that the mutational pressure is optimized to simultaneously generate genetic diversity and preserve genetic information. To check if empirical mutational pressures are optimized in these ways, we compared matrices of nucleotide mutation rates derived from bacterial genomes with their best possible alternatives that minimized or maximized costs of amino acid replacements associated with differences in their physicochemical properties (e.g. hydropathy and polarity). It should be noted that the studied empirical nucleotide substitution matrices and the costs of amino acid replacements are independent because these matrices were derived from sites free of selection on amino acid properties and the amino acid costs assumed only amino acid physicochemical properties without any information about mutation at the nucleotide level. Obtained results indicate that the empirical mutational matrices show a tendency to minimize costs of amino acid replacements. It implies that bacterial mutational pressures can evolve to decrease consequences of amino acid substitutions. However, the optimization is not full, which enables generation of some genetic variability.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
48
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
49
|
The Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons. G3-GENES GENOMES GENETICS 2017; 7:967-981. [PMID: 28122952 PMCID: PMC5345726 DOI: 10.1534/g3.116.038125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an effect, we superimposed >3.5 billion unrestricted mutational processes on the selection of nonsynonymous substitutions based on the differences in physicochemical properties of the coded amino acids. Using a modified evolutionary optimization algorithm, we determined the conditions in which the effect on the relative codon usage is maximized. We found that the effect is enhanced by mutational processes generating more adenine and thymine than guanine and cytosine, as well as more purines than pyrimidines. Interestingly, this effect is observed only under an unrestricted model of nucleotide substitution, and disappears when the mutational process is time-reversible. Comparison of the simulation results with data for real protein coding sequences indicates that the impact of selection at the amino acid level on synonymous codon usage cannot be neglected. Furthermore, it can considerably interfere, especially in AT-rich genomes, with other selections on codon usage, e.g., translational efficiency. It may also lead to difficulties in the recognition of other effects influencing codon bias, and an overestimation of protein coding sequences whose codon usage is subjected to adaptational selection.
Collapse
|
50
|
Mitochondrial genome of the Christmas tree worm Spirobranchus giganteus (Annelida: Serpulidae) reveals a high substitution rate among annelids. Gene 2017; 605:43-53. [DOI: 10.1016/j.gene.2016.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/26/2022]
|