1
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
2
|
Zhan X, Li Q, Tian P, Wang D. The attachment factors and attachment receptors of human noroviruses. Food Microbiol 2024; 123:104591. [PMID: 39038896 DOI: 10.1016/j.fm.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.
Collapse
Affiliation(s)
- Xiangjun Zhan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA, 94706, USA
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Crosswhite P, Sun Z. TNFα Induces DNA and Histone Hypomethylation and Pulmonary Artery Smooth Muscle Cell Proliferation Partly via Excessive Superoxide Formation. Antioxidants (Basel) 2024; 13:677. [PMID: 38929115 PMCID: PMC11200563 DOI: 10.3390/antiox13060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective: The level of tumor necrosis factor-α (TNF-α) is upregulated during the development of pulmonary vascular remodeling and pulmonary hypertension. A hallmark of pulmonary arterial (PA) remodeling is the excessive proliferation of PA smooth muscle cells (PASMCs). The purpose of this study is to investigate whether TNF-α induces PASMC proliferation and explore the potential mechanisms. Methods: PASMCs were isolated from 8-week-old male Sprague-Dawley rats and treated with 0, 20, or 200 ng/mL TNF-α for 24 or 48 h. After treatment, cell number, superoxide production, histone acetylation, DNA methylation, and histone methylation were assessed. Results: TNF-α treatment increased NADPH oxidase activity, superoxide production, and cell numbers compared to untreated controls. TNF-α-induced PASMC proliferation was rescued by a superoxide dismutase mimetic tempol. TNF-α treatment did not affect histone acetylation at either dose but did significantly decrease DNA methylation. DNA methyltransferase 1 activity was unchanged by TNF-α treatment. Further investigation using QRT-RT-PCR revealed that GADD45-α, a potential mediator of DNA demethylation, was increased after TNF-α treatment. RNAi inhibition of GADD45-α alone increased DNA methylation. TNF-α impaired the epigenetic mechanism leading to DNA hypomethylation, which can be abolished by a superoxide scavenger tempol. TNF-α treatment also decreased H3-K4 methylation. TNF-α-induced PASMC proliferation may involve the H3-K4 demethylase enzyme, lysine-specific demethylase 1 (LSD1). Conclusions: TNF-α-induced PASMC proliferation may be partly associated with excessive superoxide formation and histone and DNA methylation.
Collapse
Affiliation(s)
- Patrick Crosswhite
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Human Physiology, Gonzaga University, Spokane, WA 99205, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Arabidopsis LSH10 transcription factor and OTLD1 histone deubiquitinase interact and transcriptionally regulate the same target genes. Commun Biol 2023; 6:58. [PMID: 36650214 PMCID: PMC9845307 DOI: 10.1038/s42003-023-04424-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Histone ubiquitylation/deubiquitylation plays a major role in the epigenetic regulation of gene expression. In plants, OTLD1, a member of the ovarian tumor (OTU) deubiquitinase family, deubiquitylates histone 2B and represses the expression of genes involved in growth, cell expansion, and hormone signaling. OTLD1 lacks the intrinsic ability to bind DNA. How OTLD1, as well as most other known plant histone deubiquitinases, recognizes its target genes remains unknown. Here, we show that Arabidopsis transcription factor LSH10, a member of the ALOG protein family, interacts with OTLD1 in living plant cells. Loss-of-function LSH10 mutations relieve the OTLD1-promoted transcriptional repression of the target genes, resulting in their elevated expression, whereas recovery of the LSH10 function results in down-regulated transcription of the same genes. We show that LSH10 associates with the target gene chromatin as well as with DNA sequences in the promoter regions of the target genes. Furthermore, without LSH10, the degree of H2B monoubiquitylation in the target promoter chromatin increases. Hence, our data suggest that OTLD1-LSH10 acts as a co-repressor complex potentially representing a general mechanism for the specific function of plant histone deubiquitinases at their target chromatin.
Collapse
|
7
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
8
|
Ugur MR, Guerreiro DD, Moura AA, Memili E. Identification of biomarkers for bull fertility using functional genomics. Anim Reprod 2022; 19:e20220004. [PMID: 35573862 PMCID: PMC9083437 DOI: 10.1590/1984-3143-ar2022-0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 09/21/2023] Open
Abstract
Prediction of bull fertility is critical for the sustainability of both dairy and beef cattle production. Even though bulls produce ample amounts of sperm with normal parameters, some bulls may still suffer from subpar fertility. This causes major economic losses in the cattle industry because using artificial insemination, semen from one single bull can be used to inseminate hundreds of thousands of cows. Although there are several traditional methods to estimate bull fertility, such methods are not sufficient to explain and accurately predict the subfertility of individual bulls. Since fertility is a complex trait influenced by a number of factors including genetics, epigenetics, and environment, there is an urgent need for a comprehensive methodological approach to clarify uncertainty in male subfertility. The present review focuses on molecular and functional signatures of bull sperm associated with fertility. Potential roles of functional genomics (proteome, small noncoding RNAs, lipidome, metabolome) on determining male fertility and its potential as a fertility biomarker are discussed. This review provides a better understanding of the molecular signatures of viable and fertile sperm cells and their potential to be used as fertility biomarkers. This information will help uncover the underlying reasons for idiopathic subfertility.
Collapse
Affiliation(s)
| | | | - Arlindo A. Moura
- Universidade Federal do Ceará, Brasil; Universidade Federal do Ceará, Brasil
| | - Erdogan Memili
- Mississippi State University, USA; Prairie View A&M University, USA
| |
Collapse
|
9
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
10
|
The role of MOZ/KAT6A in hematological malignancies and advances in MOZ/KAT6A inhibitors. Pharmacol Res 2021; 174:105930. [PMID: 34626770 DOI: 10.1016/j.phrs.2021.105930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Hematological malignancies, unlike solid tumors, are a group of malignancies caused by abnormal differentiation of hematopoietic stem cells. Monocytic leukemia zinc finger protein (MOZ), a member of the MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) family, is a histone acetyltransferase. MOZ is involved in various cellular functions: generation and maintenance of hematopoietic stem cells, development of erythroid cells, B-lineage progenitors and myeloid cells, and regulation of cellular senescence. Studies have shown that MOZ is susceptible to translocation in chromosomal rearrangements to form fusion genes, leading to the fusion of MOZ with other cellular regulators to form MOZ fusion proteins. Different MOZ fusion proteins have different roles, such as in the development and progression of hematological malignancies and inhibition of cellular senescence. Thus, MOZ is an attractive target, and targeting MOZ to design small-molecule drugs can help to treat hematological malignancies. This review summarizes recent progress in biology and medicinal chemistry for the histone acetyltransferase MOZ. In the biology section, MOZ and cofactors, structures of MOZ and related HATs, MOZ and fusion proteins, and roles of MOZ in cancer are discussed. In medicinal chemistry, recent developments in MOZ inhibitors are summarized.
Collapse
|
11
|
Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200115. [PMID: 33866805 PMCID: PMC8059649 DOI: 10.1098/rstb.2020.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
12
|
Moiana M, Aranda F, de Larrañaga G. A focus on the roles of histones in health and diseases. Clin Biochem 2021; 94:12-19. [PMID: 33895124 DOI: 10.1016/j.clinbiochem.2021.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
Over time, the knowledge on the role of histones has significantly changed. Initially, histones were only known as DNA packaging proteins but later, it was discovered that they act extracellularly as powerful antimicrobial agents and also as potentially self-detrimental agents. Indeed, histones were found to be the most abundant proteins within neutrophil extracellular traps what ultimately highlighted their microbicidal function. In addition, extracellular histones proved to be involved in triggering exacerbated inflammatory and coagulation responses, depending on the cell type affected. Consequently, several investigations were conducted towards studying the potential of histones and their derivatives as either biomarkers or therapeutic target candidates in different diseases in which inflammation and thrombosis have a key pathophysiological role, such as sepsis, thrombosis and different types of cancer. The main objective of this review is to summarize and discuss the current state of the art with regard to both beneficial and harmful roles of histones and also their possible use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Moiana
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina
| | - Federico Aranda
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina
| | - Gabriela de Larrañaga
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina.
| |
Collapse
|
13
|
Current knowledge into the role of the peptidylarginine deiminase (PAD) enzyme family in cardiovascular disease. Eur J Pharmacol 2020; 891:173765. [PMID: 33249073 DOI: 10.1016/j.ejphar.2020.173765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Peptidylarginine deiminase (PAD) family members have a vital role in maintaining the stability of the extracellular matrix (ECM) during remodelling in several heart diseases. PAD-mediated deamination, or citrullination, has been studied in different physiological and pathological conditions in the body. However, the role of PAD isoforms has not been fully studied in cardiovascular system. Citrullination is a post-translational modification that involves conversion of peptidyl-based arginine to peptidyl-based citrulline by PAD family members in a calcium-dependent manner. Upregulation of PADs have been observed in various cardiovascular diseases, including venous thrombosis, cardiac fibrosis, heart failure, atherosclerosis, coronary heart disease and acute inflammation. In this review, experimental aspects of in vivo and in vitro studies related to the roles PAD isoforms in cardiovascular diseases including mechanisms, pathophysiological and therapeutic properties are discussed. Pharmacological strategies for targeting PAD family proteins in cardiac diseases have not yet been studied. Furthermore, the role played by PAD family members in the remodelling process during the progression of cardiovascular diseases is not fully understood.
Collapse
|
14
|
Aygun D, Bjornsson HT. Clinical epigenetics: a primer for the practitioner. Dev Med Child Neurol 2020; 62:192-200. [PMID: 31749156 DOI: 10.1111/dmcn.14398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Disruption of epigenetic modifications and the factors that maintain these modifications is rapidly emerging as a cause of developmental disorders. Here we summarize some of the major principles of epigenetics including how epigenetic modifications are: (1) normally reset in the germ line, (2) form an additional layer of interindividual variation, (3) are environmentally sensitive, and (4) change over time in humans. We also briefly discuss the disruption of growth and intellect associated with the Mendelian disorders of the epigenetic machinery and the classical imprinting disorders (such as Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome), as well as suggesting some diagnostic considerations for the clinicians taking care of these patients. Finally, we discuss novel therapeutic strategies targeting epigenetic modifications, which may offer a safe alternative to up and coming genome editing strategies for the treatment of genetic diseases. This review provides a starting point for clinicians interested in epigenetics and the role epigenetic disruption plays in human disease. WHAT THIS PAPER ADDS: Clinicians are introduced to four main principles of epigenetics. Clinical features of imprinting disorders and Mendelian disorders of epigenetic machinery are presented.
Collapse
Affiliation(s)
- Deniz Aygun
- School of Arts and Sciences, Tufts University, Medford, MA, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.,Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
15
|
Guo M, Chen Y, Chen Q, Guo X, Yuan Z, Kang L, Jiang Y. Epigenetic changes associated with increased estrogen receptor alpha mRNA transcript abundance during reproductive maturation in chicken ovaries. Anim Reprod Sci 2020; 214:106287. [PMID: 32087914 DOI: 10.1016/j.anireprosci.2020.106287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that regulates cellular responses to estrogens and transcription processes of target genes. In this study, changes in DNA methylation and histone modifications in the promoter region and Exon 1 of the ERα gene were analyzed to ascertain epigenetic changes associated with increased ERα mRNA abundance during reproductive maturation from 90 (egg production not yet initiated) to 160 (after egg production was initiated) d of age (d post-hatching) in chicken ovaries. The results indicate there was no difference in CpG methylation at the promoter and Exon 1 except at the region analyzed with primer pairs F2 and R2, where percentage of methylated CpG of Sites 2 and 8 after reproductive maturation was greater compared with before reproductive maturation. By using the chromatin immunuoprecipitation (ChIP) assay combined with SYBR green quantitative PCR, effects of histone modifications were evaluated, including histone H3K4 di + tri methylation, H3K9 phosphorylation and trimethylation, H3K36 methylation and H3K27 acetylation on chicken ERα mRNA transcript abundance. The results indicated that there was a greater histone H3K27 acetylation and lesser H3K36 trimethylation associated with increased abundance of ERα mRNA transcript in chicken ovaries after reproductive maturation (90 compared with 160 d of age). In consistent with this finding, the relative abundance of transcriptional coactivator p300 mRNA transcript and protein in the ovaries was markedly greater in reproductively mature than immature chickens. Findings provide insights into the epigenetic regulations of the chicken ERα gene expression that is required for chicken ovarian development.
Collapse
Affiliation(s)
- Miao Guo
- Department of Biology Science and Technology, Shandong First Medical University, Tai'an, 271016, PR China
| | - Yuxia Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Qiuyue Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiaoli Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Zhenjie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
16
|
Pucci M, Micioni Di Bonaventura MV, Wille-Bille A, Fernández MS, Maccarrone M, Pautassi RM, Cifani C, D’Addario C. Environmental stressors and alcoholism development: Focus on molecular targets and their epigenetic regulation. Neurosci Biobehav Rev 2019; 106:165-181. [DOI: 10.1016/j.neubiorev.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
17
|
Gu J, Lu Y, Deng M, Qiu M, Tian Y, Ji Y, Zong P, Shao Y, Zheng R, Zhou B, Sun W, Kong X. Inhibition of acetylation of histones 3 and 4 attenuates aortic valve calcification. Exp Mol Med 2019; 51:1-14. [PMID: 31292436 PMCID: PMC6802657 DOI: 10.1038/s12276-019-0272-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023] Open
Abstract
Aortic valve calcification develops in patients with chronic kidney disease who have calcium and phosphate metabolic disorders and poor prognoses. There is no effective treatment except valve replacement. However, metabolic disorders put patients at high risk for surgery. Increased acetylation of histones 3 and 4 is present in interstitial cells from human calcific aortic valves, but whether it is involved in aortic valve calcification has not been studied. In this study, we found that treating cultured porcine aortic valve interstitial cells with a high-calcium/high-phosphate medium induced calcium deposition, apoptosis, and expression of osteogenic marker genes, producing a phenotype resembling valve calcification in vivo. These phenotypic changes were attenuated by the histone acetyltransferase inhibitor C646. C646 treatment increased the levels of class I histone deacetylase members and decreased the acetylation of histones 3 and 4 induced by the high-calcium/high-phosphate treatment. Conversely, the histone deacetylase inhibitor suberoylanilide hydroxamic acid promoted valve interstitial cell calcification. In a mouse model of aortic valve calcification induced by adenine and vitamin D treatment, the levels of acetylated histones 3 and 4 were increased in the calcified aortic valves. Treatment of the models with C646 attenuated aortic valve calcification by restoring the levels of acetylated histones 3 and 4. These observations suggest that increased acetylation of histones 3 and 4 is part of the pathogenesis of aortic valve calcification associated with calcium and phosphate metabolic disorders. Targeting acetylated histones 3 and 4 may be a potential therapy for inoperable aortic valve calcification in chronic kidney disease patients.
Collapse
Affiliation(s)
- Jia Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Menqing Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Pengyu Zong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yongfeng Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Rui Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), The Wilf Cardiovascular Research Institute, The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China.
| |
Collapse
|
18
|
Bačovský V, Hobza R, Vyskot B. Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. Methods Mol Biol 2018; 1675:509-535. [PMID: 29052211 DOI: 10.1007/978-1-4939-7318-7_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Significant advances in chromosome preparation and other techniques have greatly increased the potential of plant cytogenetics in recent years. Increase in longitudinal resolution using DNA extended fibers as well as new developments in imaging and signal amplification technologies have enhanced the ability of FISH to detect small gene targets. The combination of fluorescence in situ hybridization with immunocytochemistry allows the investigation of cell events, chromosomal rearrangements and chromatin features typical for plant nuclei. Chromosome manipulation techniques using microdissection and flow sorting have accelerated the analysis of complex plant genomes. Together, the different cytogenetic approaches are invaluable for the unravelling of detailed structures of plant chromosomes, which are of utmost importance for the study of genome properties, DNA replication and gene regulation. In this technical review, different cytogenetic approaches are discussed for the analysis of plant chromosomes, with a focus on mitotic chromosomes.
Collapse
Affiliation(s)
- Václaclav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
19
|
Pan X, Fang Y, Yang X, Zheng D, Chen L, Wang L, Xiao J, Wang XE, Wang K, Cheng Z, Yu H, Zhang W. Chromatin states responsible for the regulation of differentially expressed genes under 60Co~γ ray radiation in rice. BMC Genomics 2017; 18:778. [PMID: 29025389 PMCID: PMC5639768 DOI: 10.1186/s12864-017-4172-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background The role of histone modifications in the DNA damage response has been extensively studied in non-plant systems, including mammals and yeast. However, there is a lack of detailed evidence showing how chromatin dynamics, either an individual mark or combined chromatin states, participate in regulating differentially expressed genes in the plant DNA damage response. Results In this study, we used RNA-seq and ChIP-seq to show that differentially expressed genes (DEGs), in response to ionizing radiation (IR), might be involved in different pathways responsible for the DNA damage response. Moreover, chromatin structures associated with promoters, exons and intergenic regions are significantly affected by IR. Most importantly, either an individual mark or a certain chromatin state was found to be highly correlated with the expression of up-regulated genes. In contrast, only the chromatin states, as opposed to any individual marks tested, are related to the expression of the down-regulated genes. Conclusions Our findings demonstrate that IR-related DEGs are modulated by distinct epigenetic mechanisms. Either chromatin states or distinct histone dynamics may act sequentially or in combination in regulating up-regulated genes, but the complex chromatin structure is mainly responsible for the expression of down-regulated genes. Thus, this study provides new insights into how up- and down-regulated genes are epigenetically regulated at the chromatin levels, thereby helping us to understand distinct epigenetic mechanisms that function in the plant DNA damage response. Electronic supplementary material The online version of this article (10.1186/s12864-017-4172-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xueming Yang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Jin Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Kai Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou, Fujian, 35002, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengxiu Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China. .,JiangSu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
20
|
Liu T, Zhang P, Li T, Chen X, Zhu Z, Lyu Y, Li X, Tian X, Zeng W. SETDB1 plays an essential role in maintenance of gonocyte survival in pigs. Reproduction 2017; 154:23-34. [DOI: 10.1530/rep-17-0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
Histone methyltransferase SETDB1 suppresses gene expression and modulates heterochromatin formation through H3K9me2/3. Previous studies have revealed that SETDB1 catalyzes lysine 9 of histone H3 tri-methylation and plays essential roles in maintaining the survival of embryonic stem cells and spermatogonial stem cells in mice. However, the function of SETDB1 in porcine male germ cells remains unclear. The aim of the present study was to reveal the expression profile and function of SETDB1 in porcine germ cells. SETDB1 expression gradually increased during testis development. SETDB1 was strongly localized in gonocytes. Knockdown of SETDB1 gene expression led to gonocyte apoptosis and a decrease in H3K27me3, but no significant change in H3K9me3. These observations suggested that SETDB1 is a novel epigenetic regulator of porcine male germ cells, and contributes to the maintenance of gonocyte survival in pigs, probably due to the regulation of H3K27me3 rather than H3K9me3. These findings will provide a theoretical basis for the future study of epigenetic regulation of spermatogenesis.
Collapse
|
21
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Yildiz I. A computational insight into the interaction of methylated lysines with aromatic amino acid cages. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ibrahim Yildiz
- Applied Mathematics and Sciences; Khalifa University; Abu Dhabi UAE
| |
Collapse
|
24
|
Wang X, Wang Y, Zuo Q, Li D, Zhang W, Lian C, Tang B, Xiao T, Wang M, Wang K, Li B, Zhang Y. The synergistic effect of 5Azadc and TSA on maintenance of pluripotency of chicken ESCs by overexpression of NANOG gene. In Vitro Cell Dev Biol Anim 2016; 52:488-96. [PMID: 26822431 DOI: 10.1007/s11626-015-9993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/20/2015] [Indexed: 11/30/2022]
Abstract
NANOG is a transcription factor that functions in embryonic stem cells (ESCs) and a key factor in maintaining pluripotency. Here, we cloned the NANOG gene promoter from the Rugao yellow chicken and constructed a dual luciferase reporter vector to detect its transcriptional activity and analyze the effects of 5-aza-2'-deoxycytidine (5-Azadc) and trichostatin A (TSA) on NANOG promoter activity and ESC pluripotency maintenance in vitro. NANOG transcriptional activity was enhanced when 5-Azadc and TSA were used alone or together, suggesting the possibility of elevated methylation of the CpG island in the NANOG regulatory region. When ESCs were cultured in basic medium with 5-Azadc and TSA in vitro, significantly more cell colonies were maintained in the 5-Azadc + TSA group than in the control group, which had many differentiated cells and few cell colonies after 6 d of induction. On the tenth day of induction, the cells in the control group fully differentiated and no cell colonies remained, but many cell colonies were present in the 5-Azadc + TSA group. The expression of NANOG in the cell colonies was confirmed by indirect immunofluorescence. Furthermore, ESCs could be passaged to the 12th generation under 5-Azadc and TSA treatment and maintained their pluripotency. Thus, we showed that 5-Azadc and TSA can effectively maintain chicken ESC pluripotency in vitro by increasing NANOG gene expression.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Yingjie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Dong Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Wenhui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Chao Lian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Beibei Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Tianrong Xiao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Man Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Kehua Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu Province, People's Republic of China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China. .,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China. .,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
25
|
The Induction Effect of Am80 and TSA on ESC Differentiation via Regulation of Stra8 in Chicken. PLoS One 2015; 10:e0140262. [PMID: 26606052 PMCID: PMC4659672 DOI: 10.1371/journal.pone.0140262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment -1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase® reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8.
Collapse
|
26
|
Kuppusamy SP, Kaiser JP, Wesselkamper SC. Epigenetic Regulation in Environmental Chemical Carcinogenesis and its Applicability in Human Health Risk Assessment. Int J Toxicol 2015; 34:384-92. [PMID: 26268770 DOI: 10.1177/1091581815599350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although several studies have shown that chemically mediated epigenetic changes are an etiological factor in several human disease conditions, the utility of epigenetic data, such as DNA methylation, in the current human health risk assessment paradigm is unclear. The objective of this study is to investigate the relationship between the points of departure (PODs) for cancer incidence and DNA methylation changes in laboratory animals exposed to the following environmental toxicants: bromodichloromethane, dibromochloromethane, chloroform, hydrazine, trichloroethylene, benzidine, trichloroacetic acid, and di(2-ethylhexyl) phthalate (DEHP; a known reproductive toxicant). The results demonstrate that the PODs for cancer incidence and altered DNA methylation are similar. Furthermore, based on the available data, the POD for DNA methylation appeared more sensitive compared to that for cancer incidence following the administration of DEHP to rats during different life stages. The high degree of correlation between PODs for cancer incidence and DNA methylation (for both total DNA and individual genes) suggests that DNA methylation end points could potentially be used as a screening tool in predicting the potential toxicity/carcinogenicity and in prioritizing large numbers of chemicals with sparse toxicity databases. The life stage during which treatment occurs is also an important consideration when assessing the potential application of epigenetic end points as a screening tool.
Collapse
Affiliation(s)
- Senthilkumar P Kuppusamy
- Oak Ridge Institute for Science and Education Participant at the U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, OH, USA
| | - J Phillip Kaiser
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment. Cincinnati, OH, USA
| | - Scott C Wesselkamper
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment. Cincinnati, OH, USA
| |
Collapse
|
27
|
Hartman H, Wetterholm E, Thorlacius H, Regnér S. Histone deacetylase regulates trypsin activation, inflammation, and tissue damage in acute pancreatitis in mice. Dig Dis Sci 2015; 60:1284-9. [PMID: 25492506 DOI: 10.1007/s10620-014-3474-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/28/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The onset of acute pancreatitis (AP) is characterized by early protease activation followed by inflammation and organ damage, but the mechanisms are poorly understood. AIMS We hypothesized that histone deacetylase (HDAC) inhibition might exert protective effects on AP and investigated the role of HDAC in trypsin activation, inflammation, and tissue damage in severe AP. METHODS Male C57Bl/6 mice were treated i.p. with the HDAC inhibitor trichostatin A (2 mg/kg) prior to retrograde infusion of taurocholic acid (5 %) into the pancreatic duct. Serum levels of amylase and interleukin (IL)-6, pancreatic levels of macrophage inflammatory protein-2 (MIP-2) as well as tissue morphology and myeloperoxidase activity in the pancreas and lung were determined 24 h after taurocholate challenge. Trypsin activation was analyzed in isolated acinar cells. Quantitative RT-PCR was used to examine the expression of pro-inflammatory mediators in the pancreas. RESULTS Pretreatment with trichostatin A decreased amylase levels by 70 % and protected against tissue injury in the pancreas. Moreover, HDAC inhibition reduced systemic IL-6 by more than 95 % and pulmonary myeloperoxidase activity by 75 %. Notably, inhibition of HDAC abolished taurocholate-induced gene expression of cyclooxygenase-2, MIP-2, monocyte chemotactic protein-1, IL-6, and IL-1β in the pancreas. In addition, HDAC inhibition reduced cerulein-induced trypsinogen activation in isolated acinar cells. CONCLUSION Our findings show that HDAC regulates trypsin activation, inflammation, and tissue damage in AP. Thus, targeting HDAC could serve as novel therapeutic approach in the management of severe AP.
Collapse
Affiliation(s)
- Hannes Hartman
- Department of Clinical Sciences Malmö, Section of Surgery, Skåne University Hospital, Lund University, Inga-Marie Nilssons Gata 46, 205 02, Malmö, Sweden,
| | | | | | | |
Collapse
|
28
|
Liu N, Zhuang S. Treatment of chronic kidney diseases with histone deacetylase inhibitors. Front Physiol 2015; 6:121. [PMID: 25972812 PMCID: PMC4411966 DOI: 10.3389/fphys.2015.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/02/2015] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylases (HDACs) induce deacetylation of both histone and non-histone proteins and play a critical role in the modulation of physiological and pathological gene expression. Pharmacological inhibition of HDAC has been reported to attenuate progression of renal fibrogenesis in obstructed kidney and reduce cyst formation in polycystic kidney disease. HDAC inhibitors (HDACis) are also able to ameliorate renal lesions in diabetes nephropathy, lupus nephritis, aristolochic acid nephropathy, and transplant nephropathy. The beneficial effects of HDACis are associated with their anti-fibrosis, anti-inflammation, and immunosuppressant effects. In this review, we summarize recent advances on the treatment of various chronic kidney diseases with HDACis in pre-clinical models.
Collapse
Affiliation(s)
- Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine Shanghai, China ; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University Providence, RI, USA
| |
Collapse
|
29
|
The membrane protein melanoma cell adhesion molecule (MCAM) is a novel tumor marker that stimulates tumorigenesis in hepatocellular carcinoma. Oncogene 2015; 34:5781-95. [PMID: 25728681 DOI: 10.1038/onc.2015.36] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 12/24/2022]
Abstract
Yes-associated protein (YAP) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). However, whether membrane protein can serve not only as a tumor marker that reflects YAP function but also as a therapeutic target that stimulates tumorigenesis in HCC remains unknown. Here we report that the membrane protein melanoma cell adhesion molecule (MCAM) was under positive regulation by YAP and was highly elevated in HCC cells. Within the MCAM promoter, we found the presence of a cAMP Response Element (CRE; -32 to -25 nt), which is conserved among species and is essential for YAP- and CREB-dependent regulation. Moreover, the interaction between CREB and YAP at the CRE site was dependent on PTPIY-WW domain interactions. However, MCAM expression was low and could not be regulated by YAP in breast and colon cancer cells because of the low levels of the acetyltransferase p300. In HCC cells, high levels of p300 facilitated the binding of YAP to the MCAM promoter, which in turn enhanced histone acetylation and polymerase II recruitment through the dissociation of the deacetylase Sirt1. These results suggest that MCAM is an HCC-specific target of YAP. In clinical serum samples, we found that the serum levels of MCAM were highly elevated in patients with HCC compared with healthy controls and with patients with cirrhosis, hepatitis, colon cancer and breast cancer. MCAM levels were shown to be a slightly better indicator than serum alpha-fetoprotein for predicting HCC. We further demonstrated that MCAM is essential for the survival and transformation of HCC. Mechanistically, MCAM induced translation initiation and the transcriptional activities of c-Jun/c-Fos. In addition, AKT activation had an essential role in the MCAM-promoted binding of eukaryotic initiation factor 4E to c-Jun/c-Fos mRNA. In conclusion, we demonstrated that MCAM may be a potential tumor marker and therapeutic target for the diagnosis and treatment of HCC.
Collapse
|
30
|
Wingens M, Gätgens J, Schmidt A, Albaum SP, Büntemeyer H, Noll T, Hoffrogge R. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects. J Biotechnol 2015; 201:86-97. [PMID: 25612871 DOI: 10.1016/j.jbiotec.2015.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 01/21/2023]
Abstract
CHO derivates (Chinese hamster ovary) belong to the most important mammalian cells for industrial recombinant protein production. Many efforts have been made to improve productivity and stability of CHO cells in bioreactor processes. Here, we followed up one barely understood phenomenon observed with process optimizations: a significantly increased cell-specific productivity in late phases of glucose-limited perfusion cultivations, when glucose (and lactate) reserves are exhausted. Our aim was to elucidate the cellular activities connected to the metabolic shift from glucose surplus to glucose limitation phase. With 2D-DIGE, we compared three stages in a perfusion culture of CHO cells: the initial growth with high glucose concentration and low lactate production, the second phase with glucose going to limitation and high lactate level, and finally the state of glucose limitation and also low lactate concentration but increased cell-specific productivity. With our proteomic approach we were able to demonstrate consequences of glucose limitation for the protein expression machinery which also could play a role for a higher recombinant protein production. Most interestingly, we detected epigenetic effects on the level of proteins involved in histone modification (HDAC1/-2, SET, RBBP7, DDX5). Together with shifts in the protein inventory of energy metabolism, cytoskeleton and protein expression, a picture emerges of basic changes in the cellular equipment under long-term glucose limitation of CHO cells.
Collapse
Affiliation(s)
- Marc Wingens
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology; Bioprocesses and Bioanalytics, Research Center Jülich, Germany
| | - Anica Schmidt
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Heino Büntemeyer
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
31
|
Zhou S, Mackay TFC, Anholt RRH. Transcriptional and epigenetic responses to mating and aging in Drosophila melanogaster. BMC Genomics 2014; 15:927. [PMID: 25344338 PMCID: PMC4221674 DOI: 10.1186/1471-2164-15-927] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phenotypic plasticity allows organisms to respond rapidly to changing environmental circumstances, and understanding its genomic basis can yield insights regarding the underlying genes and genetic networks affecting complex phenotypes. Female Drosophila melanogaster undergo dramatic physiological changes mediated by seminal fluid components transferred upon mating, including decreased longevity. Their physiological and behavioral effects have been well characterized, but little is known about resulting changes in regulation of gene expression or the extent to which mating-induced changes in gene expression are the same as those occurring during aging. RESULTS We assessed genome-wide mRNA, microRNA, and three common histone modifications implicated in gene activation for young and aged virgin and mated female D. melanogaster in a factorial design. We identified phenotypically plastic transcripts and epigenetic modifications associated with mating and aging. We used these data to derive phenotypically plastic regulatory networks associated with mating of young flies, and aging of virgin and mated flies. Many of the mRNAs, microRNAs and epigenetic modifications associated with mating of young flies also occur with age in virgin flies, which may reflect mating-induced accelerated aging. We functionally tested the plastic regulatory networks by overexpressing environmentally sensitive microRNAs. Overexpression resulted in altered expression of ~70% of candidate target genes, and in all cases affected oviposition. CONCLUSIONS Our results implicate microRNAs as mediators of phenotypic plasticity associated with mating and provide a comprehensive documentation of the genomic and epigenomic changes that accompany mating- and aging-induced physiological changes in female D. melanogaster.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| | - Trudy FC Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| | - Robert RH Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695-7617 USA
| |
Collapse
|
32
|
|
33
|
Kim JH, Jee BC, Lee JM, Suh CS, Kim SH. Histone acetylation level and histone acetyltransferase/deacetylase activity in ejaculated sperm from normozoospermic men. Yonsei Med J 2014; 55:1333-40. [PMID: 25048493 PMCID: PMC4108820 DOI: 10.3349/ymj.2014.55.5.1333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The aim of this work was to evaluate nuclear histone acetylation level and total histone acetyltransferase (HAT) and deacetylase (HDAC) activity in ejaculated sperm and their relevance to conventional sperm parameters. MATERIALS AND METHODS Thirty-three normozoospermic men were included in this study. Semen samples were processed by swim-up and then immunostained by six acetylation antibodies (H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, and H4K16ac). Our preliminary study verified the expression of HAT/HDAC1 in mature human sperm. From vitrified-warmed sperm samples, total HAT/HDAC activity was measured by commercially available kits. Nuclear DNA integrity was also measured by TUNEL assay. RESULTS The levels of six acetylation marks were not related with conventional sperm parameters including sperm DNA fragmentation index (DFI) as well as HAT/HDAC activity. However, sperm DFI was positively correlated with HAT activity (r=0.038 after adjustment, p<0.02). HAT activity showed a negative relationship with HDAC activity (r=-0.51, p<0.01). Strict morphology was negatively correlated with acetylation enzyme index (=HAT activity/HDAC activity) (r=-0.53, p<0.01). CONCLUSION Our works demonstrated a significant relationship of acetylation-associated enzyme activity and strict morphology or sperm DFI.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jang Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang Suk Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok Hyun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea. ; Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
34
|
Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol 2014; 290:120-30. [PMID: 24978612 DOI: 10.1016/j.cellimm.2014.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/08/2014] [Accepted: 05/31/2014] [Indexed: 12/21/2022]
Abstract
Although glucocorticoids are well known for their capacity to suppress the immune response, glucocorticoids can also promote immune responsiveness. It was the purpose of this investigation to evaluate the molecular basis for this apparent dichotomous immunologic effect. Glucocorticoid treatment of natural killer cells (NK) was shown to reduce NK cell cytolytic activity by reduction of histone promoter acetylation for perforin and granzyme B, which corresponded with reduced mRNA and protein for each. In contrast, glucocorticoid treatment increased histone acetylation at regulatory regions for interferon gamma and IL-6, as well as chromatin accessibility for each. This increase in histone acetylation was associated with increased proinflammatory cytokine mRNA and protein production upon cellular stimulation. These immunologic effects were evident at the level of the individual cell and demonstrate glucocorticoids to epigenetically reduce NK cell cytolytic activity while at the same time to prime NK cells for proinflammatory cytokine production.
Collapse
|
35
|
Gao Q, Tang J, Chen J, Jiang L, Zhu X, Xu Z. Epigenetic code and potential epigenetic-based therapies against chronic diseases in developmental origins. Drug Discov Today 2014; 19:1744-1750. [PMID: 24880107 DOI: 10.1016/j.drudis.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/05/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
Accumulated findings have demonstrated that the epigenetic code provides a potential link between prenatal stress and changes in gene expression that could be involved in the developmental programming of various chronic diseases in later life. Meanwhile, based on the fact that epigenetic modifications are reversible and can be manipulated, this provides a unique chance to develop multiple novel epigenetic-based therapeutic strategies against many chronic diseases in early developmental periods. This article will give a short review of recent findings of prenatal insult-induced epigenetic changes in developmental origins of several chronic diseases, and will attempt to provide an overview of the current epigenetic-based strategies applied in the early prevention, diagnosis and possible therapies for human chronic diseases.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jie Chen
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Lin Jiang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Xiaolin Zhu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Zhice Xu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China; Center for Prenatal Biology, Loma Linda University, CA 92350, USA.
| |
Collapse
|
36
|
Gushchanskaya ES, Gavrilov AA, Razin SV. Spatial organization of interphase chromosomes and the role of chromatin fibril dynamics in the positioning of genome elements. Mol Biol 2014. [DOI: 10.1134/s0026893314030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD, Oganesian A, Taverna P, Belinsky SA. SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int J Cancer 2014; 135:2223-31. [PMID: 24668305 DOI: 10.1002/ijc.28865] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023]
Abstract
The DNA methyltransferase (DNMT) inhibitor vidaza (5-Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI-110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat. Evaluation of in vivo plasma concentrations and pharmacokinetic properties of SGI-110 showed rapid conversion to decitabine and a plasma half-life of 4 hr. SGI-110 alone or in combination with entinostat reduced tumor burden of a K-ras/p53 mutant lung adenocarcinoma cell line (Calu6) engrafted orthotopically in nude rats by 35% and 56%, respectively. SGI-110 caused widespread demethylation of more than 300 gene promoters and microarray analysis revealed expression changes for 212 and 592 genes with SGI-110 alone or in combination with entinostat. Epigenetic therapy also induced demethylation and expression of cancer testis antigen genes that could sensitize tumor cells to subsequent immunotherapy. In the orthotopically growing tumors, highly significant gene expression changes were seen in key cancer regulatory pathways including induction of p21 and the apoptotic gene BIK. Moreover, SGI-110 in combination with entinostat caused widespread epigenetic reprogramming of EZH2-target genes. These preclinical in vivo findings demonstrate the clinical potential of SGI-110 for reducing lung tumor burden through reprogramming the epigenome.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Purohit JS, Tomar RS, Panigrahi AK, Pandey SM, Singh D, Chaturvedi MM. Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie 2013; 95:1999-2009. [PMID: 23856561 DOI: 10.1016/j.biochi.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Site-specific proteolysis of the N or C-terminus of histone tails has emerged as a novel form of irreversible post-translational modifications assigned to histones. Though there are many reports describing histone specific proteolysis, there are very few studies on purification of a histone specific protease. Here, we demonstrate a histone H3 specific protease (H3ase) activity in chicken liver nuclear extract. H3ase was purified to homogeneity and identified as glutamate dehydrogenase (GDH) by sequencing. A series of biochemical experiments further confirmed that the H3ase activity was due to GDH. The H3ase clipped histone H3 products were sequenced by N-terminal sequencing and the precise clipping sites of H3ase were mapped. H3ase activity was only specific to chicken liver as it was not demonstrated in other tissues like heart, muscle and brain of chicken. We assign a novel serine like protease activity to GDH which is specific to histone H3.
Collapse
Affiliation(s)
- Jogeswar S Purohit
- Laboratory for Chromatin Biology, Department of Zoology, University of Delhi, North Campus, Delhi 110007, India.
| | | | | | | | | | | |
Collapse
|
39
|
Chromatin-associated proteins HP1 and Mod(mdg4) modify Y-linked regulatory variation in the drosophila testis. Genetics 2013; 194:609-18. [PMID: 23636736 DOI: 10.1534/genetics.113.150805] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chromatin remodeling is crucial for gene regulation. Remodeling is often mediated through chemical modifications of the DNA template, DNA-associated proteins, and RNA-mediated processes. Y-linked regulatory variation (YRV) refers to the quantitative effects that polymorphic tracts of Y-linked chromatin exert on gene expression of X-linked and autosomal genes. Here we show that naturally occurring polymorphisms in the Drosophila melanogaster Y chromosome contribute disproportionally to gene expression variation in the testis. The variation is dependent on wild-type expression levels of mod(mdg4) as well as Su(var)205; the latter gene codes for heterochromatin protein 1 (HP1) in Drosophila. Testis-specific YRV is abolished in genotypes with heterozygous loss-of-function mutations for mod(mdg4) and Su(var)205 but not in similar experiments with JIL-1. Furthermore, the Y chromosome differentially regulates several ubiquitously expressed genes. The results highlight the requirement for wild-type dosage of Su(var)205 and mod(mdg4) in enabling naturally occurring Y-linked regulatory variation in the testis. The phenotypes that emerge in the context of wild-type levels of the HP1 and Mod(mdg4) proteins might be part of an adaptive response to the environment.
Collapse
|
40
|
El-Sayed AM, Koenen KC, Galea S. Putting the 'epi' into epigenetics research in psychiatry. J Epidemiol Community Health 2013; 67:610-6. [PMID: 23572534 DOI: 10.1136/jech-2013-202430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the past two decades, research concerned with the aetiology of psychopathology has generally progressed along two separate paths: investigations that have characterised the roles played by environmental determinants such as childhood adversity in the development of psychopathology, and those that have focused on neurobiological processes involving genetic and intracellular pathways. Epigenetic modifications, functionally relevant changes to gene expression that do not reflect changes in gene sequence, may explain how environmental exposures 'get under the skin' to modify the expression of genes and produce phenotypic variability. The potential of epigenetic research to unify two disparate strands of inquiry has contributed to substantial, and growing, interest in epigenetics in mental health research. However, there are several challenges with which investigators must contend in studies considering the role of epigenetic modifications in psychopathology. These include the development of causal models in study design, considerations about sample size and generalisability, and robust measurement of epigenetic modification. We employ an epidemiological lens to discuss these challenges and to provide recommendations for future studies in this area.
Collapse
Affiliation(s)
- Abdulrahman M El-Sayed
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
41
|
Ni P, Xu H, Chen C, Wang J, Liu X, Hu Y, Fan Q, Hou Z, Lu Y. Serum starvation induces DRAM expression in liver cancer cells via histone modifications within its promoter locus. PLoS One 2012; 7:e50502. [PMID: 23251372 PMCID: PMC3520922 DOI: 10.1371/journal.pone.0050502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/24/2012] [Indexed: 12/13/2022] Open
Abstract
DRAM is a lysosomal membrane protein and is critical for p53-mediated autophagy and apoptosis. DRAM has a potential tumor-suppressive function and is downregulated in many human cancers. However, the regulation of DRAM expression is poorly described so far. Here, we demonstrated that serum deprivation strongly induces DRAM expression in liver cancer cells and a core DNA sequence in the DRAM promoter is essential for its responsiveness to serum deprivation. We further observed that euchromatin markers for active transcriptions represented by diacetyl-H3, tetra-acetyl-H4 and the trimethyl-H3K4 at the core promoter region of DRAM gene are apparently increased in a time-dependent manner upon serum deprivation, and concomitantly the dimethyl-H3K9, a herterochromatin marker associated with silenced genes, was time-dependently decreased. Moreover, the chromatin remodeling factor Brg-1 is enriched at the core promoter region of the DRAM gene and is required for serum deprivation induced DRAM expression. These observations lay the ground for further investigation of the DRAM gene expression.
Collapse
Affiliation(s)
- Peihua Ni
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hong Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiangfan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yiqun Hu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qishi Fan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| | - Yang Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| |
Collapse
|
42
|
Ulyanov SV, Gavrilov AA. Chicken β-globin genes: A model system to study the transcriptional regulation at the level of genome domains. Mol Biol 2012. [DOI: 10.1134/s0026893312040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Panda P, Chaturvedi MM, Panda AK, Suar M, Purohit JS. Purification and characterization of a novel histone H2A specific protease (H2Asp) from chicken liver nuclear extract. Gene 2012; 512:47-54. [PMID: 23041126 DOI: 10.1016/j.gene.2012.09.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/21/2012] [Accepted: 09/28/2012] [Indexed: 12/01/2022]
Abstract
The proteolysis of the N- or the C-terminal tails of histones have recently emerged as a novel form of irreversible posttranslational modifications of histones. However, there are very few reports describing purification of a histone specific protease. Here, we report a histone H2A specific protease (H2Asp) activity in the chicken liver nuclear extract. The H2Asp was purified to homogeneity and was found to be a ~10.5kDa protein. It demonstrated high specificity to histone H2A and was an aspartic acid like protease as shown by protease inhibition assay. The H2Asp, in the in vitro cleavage assay generated a single clipped H2A product which comigrated along with histone H4 in the SDS-PAGE and migrated as a single band when single H2A was used as substrates. The expression of H2Asp was independent of age and was tissue specific, which was demonstrated only in the nuclear extracts of chicken liver and not from the same of other tissues like brain, muscles and erythrocytes. It was also seen that H2Asp activity also exists in other classes of vertebrates from Pisces to Mammals. This report forms the first such report describing purification of a histone H2A specific protease.
Collapse
Affiliation(s)
- Pragnya Panda
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, India
| | | | | | | | | |
Collapse
|
44
|
An adhesin-like protein, Lam29, from Lactobacillus mucosae ME-340 binds to histone H3 and blood group antigens in human colonic mucus. Biosci Biotechnol Biochem 2012; 76:1655-60. [PMID: 22972326 DOI: 10.1271/bbb.120150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A cell-surface 29-kDa protein (Lam29, cysteine-binding protein of the ABC transporter) from Lactobacillus mucosae ME-340 showed an adhesin-like property for human ABO blood group antigens expressed on the gastrointestinal mucosa. In addition, here we report that Lam29 also bound to an 18-kDa protein on human colonic mucus. By ligand blot assay and N-terminal amino acid sequence of the protein, it was identified as human histone H3. By ligand blot and microplate binding assays with recombinant histone H3, binding between Lam29 and histone H3 was confirmed. The adhesion of ME-340 cells to histone H3 was significantly inhibited by 26% after the addition of 2.5 mg/mL Lam29 as compared to the absence of Lam29 (p<0.01). By GHCl extraction and transcription attenuation of ME-340 cells, binding reduction of ME340 cells against histone H3 was detected at 12% and 13% respectively, as compared to control cells by the BIACORE assay (p<0.01). These data indicate that Lam29 shows multiple binding activities to blood group antigens and histone H3 in human colonic mucus. This is the first report to indicate that lactobacilli expressing Lam29 adhere to histone H3 on gastrointestinal mucosa.
Collapse
|
45
|
El-Sayed AM, Haloossim MR, Galea S, Koenen KC. Epigenetic modifications associated with suicide and common mood and anxiety disorders: a systematic review of the literature. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:10. [PMID: 22738307 PMCID: PMC3495635 DOI: 10.1186/2045-5380-2-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/18/2012] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications are those reversible, mitotically heritable alterations in genomic expression that occur independent of changes in gene sequence. Epigenetic studies have the potential to improve our understanding of the etiology of mood and anxiety disorders and suicide by bridging the gap in knowledge between the exogenous environmental exposures and pathophysiology that produce common mood and anxiety disorders and suicide. We systematically reviewed the English-language peer-reviewed literature about epigenetic regulation in these disorders between 2001–2011, summarizing and synthesizing this literature with respect to directions for future work. Twenty-one articles met our inclusion criteria. Twelve studies were concerned with epigenetic changes among suicide completers; other studies considered epigenetic regulation in depression, post-traumatic stress disorder, and panic disorder. Several studies focused on epigenetic regulation of amine, glucocorticoid, and serotonin metabolism in the production of common mood and anxiety disorders and suicide. The literature is nascent and has yet to reach consensus about the roles of particular epigenetic modifications in the etiology of these outcomes. Future studies require larger sample sizes and measurements of environmental exposures antecedent to epigenetic modification. Further work is also needed to clarify the link between epigenetic modifications in the brain and peripheral tissues and to establish ‘gold standard’ epigenetic assays.
Collapse
Affiliation(s)
- Abdulrahman M El-Sayed
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W, 168th Street, R521, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
46
|
Epigenetics in social insects: a new direction for understanding the evolution of castes. GENETICS RESEARCH INTERNATIONAL 2012; 2012:609810. [PMID: 22567395 PMCID: PMC3335566 DOI: 10.1155/2012/609810] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
Epigenetic modifications to DNA, such as DNA methylation, can expand a genome's
regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen
and worker “castes” in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1)
they have dramatic caste polyphenisms that appear to be tied to differential methylation,
(2) DNA methylation is widespread in various groups of social insects, and (3) there are
intriguing connections between the social environment and DNA methylation in many
species, from insects to mammals. In this article, we review research on honeybees, and,
when available, other social insects, on DNA methylation and queen and worker caste
differences. We outline a conceptual framework for the effects of methylation on caste
determination in honeybees that may help guide studies of epigenetic regulation in other
polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic
research, including the importance of comparative studies of DNA methylation on a
broader range of species, and highlight some key unanswered mechanistic questions
about how DNA methylation affects gene regulation.
Collapse
|
47
|
Cong X, Held JM, DeGiacomo F, Bonner A, Chen JM, Schilling B, Czerwieniec GA, Gibson BW, Ellerby LM. Mass spectrometric identification of novel lysine acetylation sites in huntingtin. Mol Cell Proteomics 2011; 10:M111.009829. [PMID: 21685499 PMCID: PMC3205870 DOI: 10.1074/mcp.m111.009829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/02/2011] [Indexed: 12/26/2022] Open
Abstract
Huntingtin (Htt) is a protein with a polyglutamine stretch in the N-terminus and expansion of the polyglutamine stretch causes Huntington's disease (HD). Htt is a multiple domain protein whose function has not been well characterized. Previous reports have shown, however, that post-translational modifications of Htt such as phosphorylation and acetylation modulate mutant Htt toxicity, localization, and vesicular trafficking. Lysine acetylation of Htt is of particular importance in HD as this modification regulates disease progression and toxicity. Treatment of mouse models with histone deacetylase inhibitors ameliorates HD-like symptoms and alterations in acetylation of Htt promotes clearance of the protein. Given the importance of acetylation in HD and other diseases, we focused on the systematic identification of lysine acetylation sites in Htt23Q (1-612) in a cell culture model using mass spectrometry. Myc-tagged Htt23Q (1-612) overexpressed in the HEK 293T cell line was immunoprecipitated, separated by SDS-PAGE, digested and subjected to high performance liquid chromatography tandem MS analysis. Five lysine acetylation sites were identified, including three novel sites Lys-178, Lys-236, Lys-345 and two previously described sites Lys-9 and Lys-444. Antibodies specific to three of the Htt acetylation sites were produced and confirmed the acetylation sites in Htt. A multiple reaction monitoring MS assay was developed to compare quantitatively the Lys-178 acetylation level between wild-type Htt23Q and mutant Htt148Q (1-612). This report represents the first comprehensive mapping of lysine acetylation sites in N-terminal region of Htt.
Collapse
Affiliation(s)
- Xin Cong
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| | - Jason M. Held
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| | | | - Akilah Bonner
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| | - Jan Marie Chen
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| | - Birgit Schilling
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| | | | | | - Lisa M. Ellerby
- From the ‡Buck Institute for Research on Aging, Novato, CA 94945
| |
Collapse
|
48
|
Expression analysis of nuclear W2-containing homologs of eukaryotic initiation factors in rice. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Qasim M, Rahman H, Oellerich M, Asif AR. Differential proteome analysis of human embryonic kidney cell line (HEK-293) following mycophenolic acid treatment. Proteome Sci 2011; 9:57. [PMID: 21933383 PMCID: PMC3189873 DOI: 10.1186/1477-5956-9-57] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/20/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mycophenolic acid (MPA) is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293) after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. RESULTS The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1) showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I) were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%), chromatin structure/dynamics (17%) and energy production/conversion (17%). Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. CONCLUSION The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to understand molecular basis of its therapeutic response. The present study identifies the myosin regulatory light chain 2 and peroxiredoxin 1 along with 10 other proteins showing significant regulation by MPA. Further characterization of these proteins may help to understand the diverse cellular effects of MPA in addition to its immunosuppressive activity.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Clinical Chemistry, University Medical Centre Goettingen, 37075, Goettingen, Germany.
| | | | | | | |
Collapse
|
50
|
Habibi E, Masoudi-Nejad A, Abdolmaleky HM, Haggarty SJ. Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 2011; 11:523-37. [DOI: 10.1007/s10142-011-0246-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 02/02/2023]
|