1
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
2
|
Ding Y, Wei Z, Yan H, Guo W. Efficacy of Treatments Targeting Hypothalamic-Pituitary-Adrenal Systems for Major Depressive Disorder: A Meta-Analysis. Front Pharmacol 2021; 12:732157. [PMID: 34566653 PMCID: PMC8461240 DOI: 10.3389/fphar.2021.732157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal hypothalamic-pituitary-adrenal (HPA) axis has been implicated in major depressive disorder (MDD). A number of studies have attempted to use HPA-modulating medications to treat depression. However, their results are inconsistent. The efficacy of these drugs for MDD remains uncertain. The aims of this meta-analysis were to determine the effect and safety profile of HPA-targeting medications for MDD. World of Science and PubMed databases were comprehensively searched up to March 2021. All randomized controlled trials (RCTs) and open-label trials exploring antiglucocorticoid and related medications in patients with depression were included. Standardized mean differences (SMDs) and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated for continuous or dichotomous outcomes, respectively. In the meta-analysis, we identified 16 RCTs and seven open-label studies that included 2972 subjects. Pooling the change data that assessed the efficacy across all included HPA-targeting medications for depression showed a significant difference between interventions and controls with very small heterogeneity after influence analysis (SMD = 0.138, 95%CI = 0.052, 0.224, p = 0.002; I2 = 20.7%, p = 0.212). No obvious publication bias was observed (p = 0.127). Effectiveness remained significant in patients with MDD (SMD = 0.136, 95%CI = 0.049, 0.223, p = 0.002). Subgroup analysis showed a significant difference favoring mifepristone and vasopressin 1B (V1B) receptor antagonist treatment. Adverse events were reported by 14 studies and our analysis of high-quality studies showed a significant difference in favor of controls (RR = 1.283, 95%CI = 1.134, 1.452, p = 0). Our study suggested that patients with MDD may benefit from mifepristone and V1B receptor antagonist treatments that have tolerable side effects. HPA-based medications are promising for depression treatment. However, additional high-quality RCTs, including head-to-head trials, are needed. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier registration number: CRD42021247279
Collapse
Affiliation(s)
- Yudan Ding
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zirou Wei
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Haohao Yan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Sjöstedt E, Sivertsson Å, Hikmet Noraddin F, Katona B, Näsström Å, Vuu J, Kesti D, Oksvold P, Edqvist PH, Olsson I, Uhlén M, Lindskog C. Integration of Transcriptomics and Antibody-Based Proteomics for Exploration of Proteins Expressed in Specialized Tissues. J Proteome Res 2018; 17:4127-4137. [DOI: 10.1021/acs.jproteome.8b00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evelina Sjöstedt
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm SE 171 21, Sweden
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Åsa Sivertsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm SE 171 21, Sweden
| | - Feria Hikmet Noraddin
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Borbala Katona
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Åsa Näsström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Jimmy Vuu
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Dennis Kesti
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Per Oksvold
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm SE 171 21, Sweden
| | - Per-Henrik Edqvist
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Ingmarie Olsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm SE 171 21, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE 752 37, Sweden
| |
Collapse
|
4
|
Koga K, Yoshinaga M, Uematsu Y, Nagai Y, Miyakoshi N, Shimoda Y, Fujinaga M, Minamimoto T, Zhang MR, Higuchi M, Ohtake N, Suhara T, Chaki S. TASP0434299: A Novel Pyridopyrimidin-4-One Derivative as a Radioligand for Vasopressin V1B Receptor. J Pharmacol Exp Ther 2016; 357:495-508. [PMID: 27029585 DOI: 10.1124/jpet.116.232942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 μM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions.
Collapse
Affiliation(s)
- Kazumi Koga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Mitsukane Yoshinaga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yoshikatsu Uematsu
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yuji Nagai
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Naoki Miyakoshi
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Yoko Shimoda
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Masayuki Fujinaga
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Takafumi Minamimoto
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Ming-Rong Zhang
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Makoto Higuchi
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Norikazu Ohtake
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Tetsuya Suhara
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| | - Shigeyuki Chaki
- Pharmacology Laboratories (K.K., Y.U., S.C.) and Chemistry Laboratories (M.Y., N.M., N.O.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan; and Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan (Y.N., Y.S., M.F., T.M., M.-R.Z., M.H., T.S.)
| |
Collapse
|
5
|
Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M. Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacology 2013; 38:1504-11. [PMID: 23422793 PMCID: PMC3682145 DOI: 10.1038/npp.2013.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cortisol response to psychosocial stress may become dysregulated in stress-related disorders. It is potentiated by pituitary secretion of adrenocorticotropic hormone (ACTH), which is, in part, regulated by arginine vasopressin receptor-1B (AVPR1B). AVPR1B variants were previously reported to associate with mood and anxiety disorders. This study aims, for the first time, to investigate association of AVPR1B genetic variants with mood and anxiety outcomes in suicidal behavior.Using a family-based study design of 660 complete nuclear family trios with offspring who have made a suicide attempt (SA), we tested the direct association and linkage of AVPR1B single nucleotide polymorphisms (SNPs) with SA, as well as with depression and anxiety in SA. Main findings were the association and linkage of AVPR1B exon 1 SNP rs33990840 and a major 6-SNP haplotype representative of all common AVPR1B-SNPs, on the outcome of high Beck Depression Inventory scores in SA. By contrast, genetic associations with lifetime diagnoses of depression and anxiety in SA or gene-environment interactions between AVPR1B variants and stressful life events (SLEs) were not significant. An exploratory screen of interactions between AVPR1B and CRHR1 (corticotropin-releasing hormone receptor-1), the principal pituitary regulator of ACTH secretion, showed no support for gene-gene interactions on the studied outcomes. The results suggest that AVPR1B genetic variation, eg, non-synonymous SNP rs33990840 mediating putative consequences on ligand binding, has a role in SA etiology characterized by elevated depression symptoms, without involving AVPR1B-moderation of SLEs.
Collapse
Affiliation(s)
- Yair J Ben-Efraim
- The National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Danuta Wasserman
- The National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Jerzy Wasserman
- The National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - Marcus Sokolowski
- The National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden,National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm S-171 77, Sweden. Tel: +468 5248 6938, Fax: +4683 06439, E-mail:
| |
Collapse
|
6
|
Ocampo Daza D, Lewicka M, Larhammar D. The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes. Gen Comp Endocrinol 2012; 175:135-43. [PMID: 22057000 DOI: 10.1016/j.ygcen.2011.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 10/20/2011] [Indexed: 11/15/2022]
Abstract
The vertebrate oxytocin and vasopressin receptors form a family of G-protein-coupled receptors (GPCRs) that mediate a large variety of functions, including social behavior and the regulation of blood pressure, water balance and reproduction. In mammals four family members have been identified, three of which respond to vasopressin (VP) named V1A, V1B and V2, and one of which is activated by oxytocin (OT), called the OT receptor. Four receptors have been identified in chicken as well, but these have received different names. Until recently only V1-type receptors have been described in several species of teleost fishes. We have identified family members in several gnathostome genomes and performed phylogenetic analyses to classify OT/VP-receptors across species and determine orthology relationships. Our phylogenetic tree identifies five distinct ancestral gnathostome receptor subtypes in the OT/VP receptor family: V1A, V1B, V2A, V2B and OT receptors. The existence of distinct V2A and V2B receptors has not been previously recognized. We have found these two subtypes in all examined teleost genomes as well as in available frog and lizard genomes and conclude that the V2A-type is orthologous to mammalian V2 receptors whereas the V2B-type is orthologous to avian V2 receptors. Some teleost fishes have acquired additional and more recent gene duplicates with up to eight receptor family members. Thus, this analysis reveals an unprecedented complexity in the gnathostome repertoire of OT/VP receptors, opening interesting research avenues regarding functions such as regulation of water balance, reproduction and behavior, particularly in reptiles, amphibians, teleost fishes and cartilaginous fishes.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Neuroscience, Science for Life Laboratory, Uppsala Universitet, Box 593, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
7
|
Pompili M, Serafini G, Innamorati M, Möller-Leimkühler AM, Giupponi G, Girardi P, Tatarelli R, Lester D. The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur Arch Psychiatry Clin Neurosci 2010; 260:583-600. [PMID: 20174927 DOI: 10.1007/s00406-010-0108-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/05/2010] [Indexed: 12/11/2022]
Abstract
Suicidal behavior and mood disorders are one of the world's largest public health problems. The biological vulnerability for these problems includes genetic factors involved in the regulation of the serotonergic system and stress system. The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates the body's response to stress and has complex interactions with brain serotonergic, noradrenergic and dopaminergic systems. Corticotropin-releasing hormone and vasopressin act synergistically to stimulate the secretion of ACTH that stimulates the biosynthesis of corticosteroids such as cortisol from cholesterol. Cortisol is a major stress hormone and has effects on many tissues, including on mineralocorticoid receptors and glucocorticoid receptors in the brain. Glucocorticoids produce behavioral changes, and one important target of glucocorticoids is the hypothalamus, which is a major controlling center of the HPA axis. Stress plays a major role in the various pathophysiological processes associated with mood disorders and suicidal behavior. Serotonergic dysfunction is a well-established substrate for mood disorders and suicidal behavior. Corticosteroids may play an important role in the relationship between stress, mood changes and perhaps suicidal behavior by interacting with 5-HT1A receptors. Abnormalities in the HPA axis in response to increased levels of stress are found to be associated with a dysregulation in the serotonergic system, both in subjects with mood disorders and those who engage in suicidal behavior. HPA over-activity may be a good predictor of mood disorders and perhaps suicidal behavior via abnormalities in the serotonergic system.
Collapse
Affiliation(s)
- Maurizio Pompili
- Department of Psychiatry, Sant'Andrea Hospital, Via di Grottarossa 1035, 00189, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. ACTA ACUST UNITED AC 2007; 57:531-53. [PMID: 17524488 DOI: 10.1016/j.brainresrev.2007.04.005] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 04/21/2007] [Indexed: 11/28/2022]
Abstract
The stress response is mediated by the hypothalamo-pituitary-adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)-alpha in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This 'glucocorticoid cascade hypothesis' of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.
Collapse
Affiliation(s)
- A-M Bao
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4:141-94. [PMID: 15996533 DOI: 10.1016/j.arr.2005.03.003] [Citation(s) in RCA: 664] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/14/2005] [Indexed: 01/10/2023]
Abstract
Corticotropin-releasing hormone (CRH) plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis, i.e., the final common pathway in the stress response. The action of CRH on ACTH release is strongly potentiated by vasopressin, that is co-produced in increasing amounts when the hypothalamic paraventricular neurons are chronically activated. Whereas vasopressin stimulates ACTH release in humans, oxytocin inhibits it. ACTH release results in the release of corticosteroids from the adrenal that, subsequently, through mineralocorticoid and glucocorticoid receptors, exert negative feedback on, among other things, the hippocampus, the pituitary and the hypothalamus. The most important glucocorticoid in humans is cortisol, present in higher levels in women than in men. During aging, the activation of the CRH neurons is modest compared to the extra activation observed in Alzheimer's disease (AD) and the even stronger increase in major depression. The HPA-axis is hyperactive in depression, due to genetic factors or due to aversive stimuli that may occur during early development or adult life. At least five interacting hypothalamic peptidergic systems are involved in the symptoms of major depression. Increased production of vasopressin in depression does not only occur in neurons that colocalize CRH, but also in neurons of the supraoptic nucleus (SON), which may lead to increased plasma levels of vasopressin, that have been related to an enhanced suicide risk. The increased activity of oxytocin neurons in the paraventricular nucleus (PVN) may be related to the eating disorders in depression. The suprachiasmatic nucleus (SCN), i.e., the biological clock of the brain, shows lower vasopressin production and a smaller circadian amplitude in depression, which may explain the sleeping problems in this disorder and may contribute to the strong CRH activation. The hypothalamo-pituitary thyroid (HPT)-axis is inhibited in depression. These hypothalamic peptidergic systems, i.e., the HPA-axis, the SCN, the SON and the HPT-axis, have many interactions with aminergic systems that are also implicated in depression. CRH neurons are strongly activated in depressed patients, and so is their HPA-axis, at all levels, but the individual variability is large. It is hypothesized that particularly a subgroup of CRH neurons that projects into the brain is activated in depression and induces the symptoms of this disorder. On the other hand, there is also a lot of evidence for a direct involvement of glucocorticoids in the etiology and symptoms of depression. Although there is a close association between cerebrospinal fluid (CSF) levels of CRH and alterations in the HPA-axis in depression, much of the CRH in CSF is likely to be derived from sources other than the PVN. Furthermore, a close interaction between the HPA-axis and the hypothalamic-pituitary-gonadal (HPG)-axis exists. Organizing effects during fetal life as well as activating effects of sex hormones on the HPA-axis have been reported. Such mechanisms may be a basis for the higher prevalence of mood disorders in women as compared to men. In addition, the stress system is affected by changing levels of sex hormones, as found, e.g., in the premenstrual period, ante- and postpartum, during the transition phase to the menopause and during the use of oral contraceptives. In depressed women, plasma levels of estrogen are usually lower and plasma levels of androgens are increased, while testosterone levels are decreased in depressed men. This is explained by the fact that both in depressed males and females the HPA-axis is increased in activity, parallel to a diminished HPG-axis, while the major source of androgens in women is the adrenal, whereas in men it is the testes. It is speculated, however, that in the etiology of depression the relative levels of sex hormones play a more important role than their absolute levels. Sex hormone replacement therapy indeed seems to improve mood in elderly people and AD patients. Studies of rats have shown that high levels of cumulative corticosteroid exposure and rather extreme chronic stress induce neuronal damage that selectively affects hippocampal structure. Studies performed under less extreme circumstances have so far provided conflicting data. The corticosteroid neurotoxicity hypothesis that evolved as a result of these initial observations is, however, not supported by clinical and experimental observations. In a few recent postmortem studies in patients treated with corticosteroids and patients who had been seriously and chronically depressed no indications for AD neuropathology, massive cell loss, or loss of plasticity could be found, while the incidence of apoptosis was extremely rare and only seen outside regions expected to be at risk for steroid overexposure. In addition, various recent experimental studies using good stereological methods failed to find massive cell loss in the hippocampus following exposure to stress or steroids, but rather showed adaptive and reversible changes in structural parameters after stress. Thus, the HPA-axis in AD is only moderately activated, possibly due to the initial (primary) hippocampal degeneration in this condition. There are no convincing arguments to presume a causal, primary role for cortisol in the pathogenesis of AD. Although cortisol and CRH may well be causally involved in the signs and symptoms of depression, there is so far no evidence for any major irreversible damage in the human hippocampus in this disorder.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
10
|
Volpi S, Rabadan-Diehl C, Aguilera G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress 2004; 7:75-83. [PMID: 15512850 DOI: 10.1080/10253890410001733535] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Vasopressin (VP) stimulates pituitary ACTH secretion through interaction with receptors of the V1b subtype (V1bR, V3R), located in the plasma membrane of the pituitary corticotroph, mainly by potentiating the stimulatory effects of corticotropin releasing hormone (CRH). Chronic stress paradigms associated with corticotroph hyperresponsiveness lead to preferential expression of hypothalamic VP over CRH and upregulation of pituitary V1bR, suggesting an important role for VP during adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to stress. Vasopressinergic regulation of ACTH secretion depends on the number of V1bRs as well as coupling of the receptor to phospholipase C (PLC) in the pituitary. Regulation of V1bR gene transcription may involve a number of regulatory elements in the promoter region, of which a GAGA box was shown to be essential. Although V1bR gene transcription is necessary to maintain V1bR mRNA levels, the lack of correlation between VP binding and V1bR mRNA suggests that regulation of mRNA translation is a major regulatory step of the number of V1bRs. V1bR translation appears to be under tonic inhibition by upstream minicistrons and positive regulation through protein kinase C (PKC) activation of an internal ribosome entry site (IRES) in the 5' untranslated region (5'UTR) of the mRNA. The data provide mechanisms by which regulation of hypothalamic VP and pituitary V1bR content contribute to controlling HPA axis activity during chronic stress.
Collapse
Affiliation(s)
- Simona Volpi
- Section of Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-1862, USA
| | | | | |
Collapse
|
11
|
Young SF, Tatter SB, Valego NK, Figueroa JP, Thompson J, Rose JC. The role of hypothalamic input on corticotroph maturation in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1621-30. [PMID: 12609818 DOI: 10.1152/ajpregu.00572.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing hormone receptor type 1 (CRH-R1) expression and vasopressin type 1b (V1b) receptor protein decrease in late-gestation fetal sheep. Because hypothalamo-pituitary disconnection (HPD) has been demonstrated to prevent the morphological maturation of corticotrophs, we hypothesized that hypothalamic input is necessary for the maturational changes in CRH-R1 and V1b receptor levels. We measured CRH-R1 and V1b receptor expression in the anterior pituitaries of fetuses at 140 days gestational age (dGA) that underwent HPD or sham surgery at 120 dGA. CRH-R1 mRNA decreased similarly in HPD and sham-operated fetuses compared with 120 dGA naive fetuses. However, CRH-R1 protein levels were elevated in HPD fetuses compared with sham and were not different from 120 dGA values. V1b protein levels decreased similarly in HPD and sham-operated fetuses compared with 120 dGA naive fetuses. We conclude that hypothalamic input to the pituitary is necessary for the decrease in CRH-R1 receptor protein levels in late-gestation fetal sheep. However, hypothalamic input is not necessary for the decrease in V1b receptor expression seen in late gestation.
Collapse
Affiliation(s)
- Sharla F Young
- Department of Physiology/Pharmacology, Excellence in Cardiovascular Sciences Summer Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
12
|
Young SF, Smith JL, Figueroa JP, Rose JC. Ontogeny and effect of cortisol on vasopressin-1b receptor expression in anterior pituitaries of fetal sheep. Am J Physiol Regul Integr Comp Physiol 2003; 284:R51-6. [PMID: 12388438 DOI: 10.1152/ajpregu.00427.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticotroph responsiveness to arginine vasopressin (AVP) increases during late gestation in fetal sheep. The mechanism of this increase in AVP responsiveness is currently unknown but could be related to an increase in vasopressin type 1b (V1b) receptor expression in the pituitary during development. To determine if there are ontogenic changes in V1b receptor expression that may help explain the changes in ACTH responses to AVP, we studied pituitaries from three groups of fetal sheep [100, 120, or 140 days gestational age (dGA)]. V1b receptor mRNA and protein significantly decreased by 140 dGA. Peak V1b mRNA levels were detected at 100 dGA, while peak V1b protein levels were detected at 120 dGA. The reduction in V1b receptor expression in late gestation may be due to the naturally occurring peripartum increase in fetal plasma cortisol because cortisol infusion at 122-130 dGA decreased V1b receptor mRNA. Thus there is a marked decrease in the expression of the V1b receptor in the pituitary during fetal development, leaving the role of the V1b receptor in increasing AVP responsiveness uncertain.
Collapse
MESH Headings
- Animals
- Arginine Vasopressin/metabolism
- Blotting, Western
- Female
- Fetus/drug effects
- Fetus/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gestational Age
- Hydrocortisone/metabolism
- Hydrocortisone/pharmacology
- Male
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Sheep, Domestic/embryology
- Sheep, Domestic/genetics
Collapse
Affiliation(s)
- Sharla F Young
- Department of Physiology/Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
13
|
René P, de Keyzer Y. The vasopressin receptor of corticotroph pituitary cells. PROGRESS IN BRAIN RESEARCH 2002; 139:345-57. [PMID: 12436948 DOI: 10.1016/s0079-6123(02)39029-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patricia René
- CNRS UPR 1524, Institut Cochin de Génétique Moléculaire, 75014 Paris, France.
| | | |
Collapse
|
14
|
Castro MG, Williams JC, Southgate TD, Smith-Arica J, Stone D, Hurtado-Lorenzo A, Umana P, Lowenstein PR. Cell Type Specific and Inducible Transgenesis in the Anterior Pituitary Gland. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-1-4615-1633-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|