1
|
Yu Q, Zhu H, Wang H, Aimaier R, Chung M, Wang Z, Li Q. M6A-Related Bioinformatics Analysis Reveals a New Prognostic Risk Signature in Cutaneous Malignant Melanoma. DISEASE MARKERS 2022; 2022:8114731. [PMID: 35722625 PMCID: PMC9201746 DOI: 10.1155/2022/8114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Cutaneous malignant melanoma (CMM) is the most deadly skin cancer worldwide. Despite advances in the treatments of CMM, its incidence and mortality rates are still increasing. N6-methyladenosine (m6A) is the most common form of RNA modification and has attracted increasing interest in cancer initiation and progression. However, the role of m6A regulators in CMM and their correlation with prognosis remain elusive. Here, we demonstrated that by applying consensus clustering, all CMM patient cases can be divided into two clusters based on overall expression levels of 25 m6A genes. We systematically analyzed the prognostic value of the 25 m6A RNA methylation regulators in CMM and found that ELAVL1, ABCF1, and IGF2BP1 yield the highest scores for predicting the prognosis of CMM. Accordingly, we derived a risk signature consisting of three selected m6A genes as an independent prognostic marker for CMM and validated our findings with data derived from a different CMM cohort. Next, we determined that CNVs in m6A genes had a significant negative impact on patient survival. The mRNA expression levels of m6A genes were correlated with CNV mutation. Moreover, in the selected three risk signature m6A regulators, GSEA analysis showed that they were closely correlated with inflammation and immune pathways. TME analysis proved that m6A gene expressions were negatively correlated with immune cell infiltration. In conclusion, m6A regulators are vital participants in CMM pathology; and ELAVL1, ABCF1, and IGF2BP1 mRNA levels are valuable factors for prognosis prediction and treatment strategy development.
Collapse
Affiliation(s)
- Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Huijing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310017, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
2
|
Yang X, Yang LX, Wu J, Guo ML, Zhang Y, Ma SG. Treatment of lidocaine on subacute thyroiditis via restraining inflammatory factor expression and inhibiting pyroptosis pathway. J Cell Biochem 2019; 120:10964-10971. [PMID: 30963625 DOI: 10.1002/jcb.27675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND To explore the role of lidocaine on subacute thyroiditis (SAT) and the molecular mechanism. METHODS SAT models were constructed by infecting adenovirus to thyroid follicular epithelial cells. Cells were randomly divided into five groups: model group, low lidocaine, middle lidocaine, high lidocaine, and a control group. Thyroid secretion related factors TG and TPO, T3 and T4 were separately determined by reverse transcription-polymerase chain reaction (RT-PCR) and radioimmunoassay. Flow cytometry was used to determine thyroid follicular epithelial cell apoptosis situation. RT-PCR and Western blot analysis were used to determine the expression of inflammatory cytokines and pyroptosis related factors interleukin (IL)-1α, IL-6, THF-α, ELAVL1, NLR family pyrin domain containing 3 (NLRP3), caspase-1, and IL-1β. RESULTS Lidocaine decreased the relative level of TG, TPO, T3, and T4 in adenovirus-infected thyroid follicular epithelial cells. All levels of concentrations, including low, middle, and high, of lidocaine, significantly decreased the apoptosis rate of adenovirus-infected cells. Lidocaine dramatically reduced the protein expression of IL-1α, IL-6, THF-α, ELAVL1, NLRP3, caspase-1, and IL-1β in adenovirus-infected thyroid follicular epithelial cells. CONCLUSION Lidocaine can improve SAT through inhibiting expression of inflammatory factors and the pyroptosis pathway.
Collapse
Affiliation(s)
- Xi Yang
- Geriatrics Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University. Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention. Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Guangxi, China
| | - Liu-Xue Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ji Wu
- Department of Thyroid and Breast Surgery, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China.,Department of Thyroid and Breast Surgery, Nanjing Drum Tower Hospital, Suqian, China
| | - Man-Li Guo
- Department of Endocrinology and Metabolism, Suqian People's Hospital, Nanjing Drum Tower Hospital, Suqian, China
| | - Yong Zhang
- Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China
| | - Shao-Gang Ma
- Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China
| |
Collapse
|
3
|
Beinke C, Port M, Ullmann R, Gilbertz K, Majewski M, Abend M. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis. Radiat Res 2018; 189:579-596. [PMID: 29613823 DOI: 10.1667/rr14974.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G2 as well as into the second G1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - R Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - K Gilbertz
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
4
|
Watanabe T, Aonuma H. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2014; 23:26-41. [PMID: 24382152 DOI: 10.1111/imb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects.
Collapse
Affiliation(s)
- T Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
5
|
Govindaraju S, Lee BS. Adaptive and maladaptive expression of the mRNA regulatory protein HuR. World J Biol Chem 2013; 4:111-118. [PMID: 24340134 PMCID: PMC3856306 DOI: 10.4331/wjbc.v4.i4.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding proteins involved in regulation of mRNA post-transcriptional processing and translation control the fates of thousands of mRNA transcripts and basic cellular processes. The best studied of these, HuR, is well characterized as a mediator of mRNA stability and translation, and more recently, as a factor in nuclear functions such as pre-mRNA splicing. Due to HuR’s role in regulating thousands of mRNA transcripts, including those for other RNA-binding proteins, HuR can act as a master regulator of cell survival and proliferation. HuR itself is subject to multiple post-translational modifications including regulation of its nucleocytoplasmic distribution. However, the mechanisms that govern HuR levels in the cell have only recently begun to be defined. These mechanisms are critical to cell health, as it has become clear in recent years that aberrant expression of HuR can lead alternately to decreased cell viability or to promotion of pathological proliferation and invasiveness. HuR is expressed as alternate mRNAs that vary in their untranslated regions, leading to differences in transcript stability and translatability. Multiple transcription factors and modulators of mRNA stability that regulate HuR mRNA expression have been identified. In addition, translation of HuR is regulated by numerous microRNAs, several of which have been demonstrated to have anti-tumor properties due to their suppression of HuR expression. This review summarizes the current state of knowledge of the factors that regulate HuR expression, along with the circumstances under which these factors contribute to cancer and inflammation.
Collapse
|
6
|
Characterization of multiple exon 1 variants in mammalian HuD mRNA and neuron-specific transcriptional control via neurogenin 2. J Neurosci 2012; 32:11164-75. [PMID: 22895702 DOI: 10.1523/jneurosci.2247-12.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RBP (RNA-binding protein) and Hu/ELAV family member HuD regulates mRNA metabolism of genes directly or indirectly involved in neuronal differentiation, learning and memory, and several neurological diseases. Given the important functions of HuD in a variety of processes, we set out to determine the mechanisms that promote HuD mRNA expression in neurons using a mouse model. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in developing neurons. Bioinformatic and 5'RACE (rapid amplification of cDNA ends) analyses of the 5' genomic flanking region identified eight conserved HuD leader exons (E1s), two of which are novel. Expression of all E1 variants was determined in mouse embryonic (E14.5) and adult brains. Sequential deletion of the 5' regulatory region upstream of the predominantly expressed E1c variant revealed a well conserved 400 bp DNA region that contains five E-boxes and is capable of directing HuD expression specifically in neurons. Using EMSA (electrophoretic mobility shift assay), ChIP (chromatin immunoprecipitation), and 5' regulatory region deletion and mutation analysis, we found that two of these E-boxes are targets of Neurogenin 2 (Ngn2) and that this mechanism is important for HuD mRNA induction. Together, our findings reveal that transcriptional regulation of HuD involves the use of alternate leader exons and Ngn2 mediates neuron-specific mRNA expression. To our knowledge, this is the first study to identify molecular events that positively regulate HuD mRNA expression.
Collapse
|
7
|
Sinnaeve PR, Donahue MP, Grass P, Seo D, Vonderscher J, Chibout SD, Kraus WE, Sketch M, Nelson C, Ginsburg GS, Goldschmidt-Clermont PJ, Granger CB. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS One 2009; 4:e7037. [PMID: 19750006 PMCID: PMC2736586 DOI: 10.1371/journal.pone.0007037] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 08/09/2009] [Indexed: 11/19/2022] Open
Abstract
Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall. Patients were selected according to their coronary artery disease index (CADi), a validated angiographical measure of the extent of coronary atherosclerosis that correlates with outcome. RNA was extracted from blood of 120 patients with at least a stenosis greater than 50% (CADi≥23) and from 121 controls without evidence of coronary stenosis (CADi = 0). 160 individual genes were found to correlate with CADi (rho>0.2, P<0.003). Prominent differential expression was observed especially in genes involved in cell growth, apoptosis and inflammation. Using these 160 genes, a partial least squares multivariate regression model resulted in a highly predictive model (r2 = 0.776, P<0.0001). The expression pattern of these 160 genes in aortic tissue also predicted the severity of atherosclerosis in human aortas, showing that peripheral blood gene expression associated with coronary atherosclerosis mirrors gene expression changes in atherosclerotic arteries. In conclusion, the simultaneous expression pattern of 160 genes in whole blood correlates with the severity of coronary artery disease and mirrors expression changes in the atherosclerotic vascular wall.
Collapse
Affiliation(s)
- Peter R Sinnaeve
- Duke University Medical Center and Duke Clinical Research Institute, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ayupova DA, Singh M, Leonard EC, Basile DP, Lee BS. Expression of the RNA-stabilizing protein HuR in ischemia-reperfusion injury of rat kidney. Am J Physiol Renal Physiol 2009; 297:F95-F105. [PMID: 19420108 DOI: 10.1152/ajprenal.90632.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The RNA-binding protein human antigen R (HuR) participates in the posttranscriptional regulation of mRNAs bearing 3' AU-rich and U-rich elements, which HuR can stabilize under conditions of cellular stress. Using the LLC-PK(1) proximal tubule cell line model, we recently suggested a role for HuR in protecting kidney epithelia from injury during ischemic stress (Jeyaraj S, Dakhlallah D, Hill SR, Lee BS. J Biol Chem 280: 37957-37964, 2005; Jeyaraj SC, Dakhlallah D, Hill SR, Lee BS. Am J Physiol Renal Physiol 291: F1255-F1263, 2006). Here, we have extended this work to show that small interfering RNA-mediated suppression of HuR in LLC-PK(1) cells increased apoptosis during energy depletion, while overexpression of HuR diminished apoptosis. Suppression of HuR also resulted in diminished levels of key cell survival proteins such as Bcl-2 and Hsp70. Furthermore, rat kidneys were subjected in vivo to transient ischemia followed by varying periods of reperfusion. Ischemia and reperfusion (I/R) affected intensity and distribution of HuR in a nephron segment-specific manner. Cells of the proximal tubule, which are most sensitive to I/R injury, demonstrated a transient shift of HuR to the cytoplasm immediately following ischemia. Over a 14-day period following the onset of reperfusion, nuclear and total HuR protein gradually increased in cortical and medullary proximal tubules, but not in non-proximal tubule cells. HuR mRNA was expressed in two forms with alternate transcriptional start sites that increased over a 14-day I/R period, and in vitro studies suggest selective translatability of these two mRNAs. Baseline and I/R-stimulated levels of HuR mRNA did not parallel those of HuR protein, suggesting translational control of HuR expression, particularly in medullary proximal tubules. These findings suggest that alterations in distribution and expression of the antiaptotic protein HuR specifically in cells of the proximal tubule effect a protective mechanism during and following I/R injury in kidney.
Collapse
Affiliation(s)
- Dina A Ayupova
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Young LE, Sanduja S, Bemis–Standoli K, Pena EA, Price RL, Dixon DA. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009; 136:1669-79. [PMID: 19208339 PMCID: PMC3742387 DOI: 10.1053/j.gastro.2009.01.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/09/2008] [Accepted: 01/09/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS During tumorigenesis, loss of rapid messenger RNA (mRNA) decay allows for overexpression of cancer-associated genes. The RNA-binding proteins Hu antigen R (HuR) and tristetraprolin (TTP) bind AU-rich elements in the 3' untranslated region of many cancer-associated mRNAs and target them for stabilization or rapid decay, respectively. We examined the functions of HuR and TTP during colon tumorigenesis and their ability to regulate cyclooxygenase (COX-2), a mediator of prostaglandin synthesis that increases in the colon tumor microenvironment. METHODS We evaluated expression of HuR and TTP during colorectal tumorigenesis and in colon cancer cells and associated them with COX-2 expression. HuR and TTP-inducible cells were created to investigate HuR- and TTP-mediated regulation of COX-2. RESULTS In normal colon tissues, low levels of nuclear HuR and higher levels of TTP were observed. By contrast, increased HuR expression and cytoplasmic localization were observed in 76% of adenomas and 94% of adenocarcinomas, and TTP expression was lost in >75% of adenomas and adenocarcinomas. Similar results were obtained for HuR and TTP mRNA levels in normal and staged tumor samples. In both adenomas and adenocarcinomas, COX-2 overexpression was associated with increased HuR and decreased TTP (P < .0001); similar associations were observed in colon cancer cells. HuR overexpression in cells up-regulated COX-2 expression, whereas overexpression of TTP inhibited it; limited TTP expression antagonized HuR-mediated COX-2 overexpression. CONCLUSIONS Increased expression of the mRNA stability factor HuR and loss of the decay factor TTP occurs during early stages of colorectal tumorigenesis. These changes promote COX-2 overexpression and could contribute to colon tumorigenesis.
Collapse
Affiliation(s)
- Lisa E. Young
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia
| | - Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia
| | - Kristi Bemis–Standoli
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia
| | - Edsel A. Pena
- Department of Statistics, University of South Carolina, Columbia
| | - Robert L. Price
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Dan A. Dixon
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia
| |
Collapse
|
10
|
Cherry J, Jones H, Karschner VA, Pekala PH. Post-transcriptional control of CCAAT/enhancer-binding protein beta (C/EBPbeta) expression: formation of a nuclear HuR-C/EBPbeta mRNA complex determines the amount of message reaching the cytosol. J Biol Chem 2008; 283:30812-20. [PMID: 18678862 PMCID: PMC2576548 DOI: 10.1074/jbc.m805659200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Indexed: 12/27/2022] Open
Abstract
In 3T3-L1 cells, HuR is constitutively expressed and prior to induction of differentiation localized predominantly to the nucleus. Within minutes of induction of differentiation, nuclear HuR binds to its target ligand mRNAs, and the complexes appear to move to the cytosol. One ligand mRNA is the CCAAT/enhancer-binding protein beta (C/EBPbeta) message. To examine the function and importance of the HuR-C/EBPbeta interaction, retroviral expression constructs were created in which the HuR binding site was altered by deletion (betadel) or deletion and substitution (betad/s). Expression of these constructs in murine embryonic fibroblasts resulted in significant adipose conversion relative to those cells expressing wild type C/EBPbeta. C/EBPbeta protein content was increased markedly in both betadel and betad/s, which correlated with the acquisition of the adipocyte phenotype. Analysis of the betad/s cell line demonstrated a robust expression of C/EBPalpha coincident with peroxisome proliferator-activated receptor gamma expression. Total C/EBPbeta mRNA accumulation indicated no difference between cells harboring either the wild type C/EBPbeta cDNA or betad/s construct. However, cytosolic C/EBPbeta mRNA in the cells expressing the betad/s construct was maintained at levels between 2- and 7-fold greater than in the cells expressing the wild type construct. Alteration in mRNA half-life was not responsible for the increased accumulation. Mechanistically, these data suggest that HuR binding results in nuclear retention of the C/EBPbeta mRNA and is consistent with HuR control, at least in part, of mRNA processing.
Collapse
Affiliation(s)
- Joy Cherry
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
11
|
Bonora E, Evangelisti C, Bonichon F, Tallini G, Romeo G. Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br J Cancer 2006; 95:1529-36. [PMID: 17088905 PMCID: PMC2360750 DOI: 10.1038/sj.bjc.6603455] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO.
Collapse
Affiliation(s)
- E Bonora
- Unità di Genetica Medica, Policlinico Universitario S. Orsola-Malpighi, Università di Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
12
|
Goetz FW, Iliev DB, McCauley LAR, Liarte CQ, Tort LB, Planas JV, Mackenzie S. Analysis of genes isolated from lipopolysaccharide-stimulated rainbow trout (Oncorhynchus mykiss) macrophages. Mol Immunol 2005; 41:1199-210. [PMID: 15482855 DOI: 10.1016/j.molimm.2004.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 11/24/2022]
Abstract
A primary cell culture system was used to obtain differentiated rainbow trout (Oncorhynchus mykiss) macrophages that were stimulated with Escherichia coli lipopolysaccharide (LPS-10 microg/ml) for 12 h in vitro. Messenger RNA from the LPS-stimulated cells was used to create two cDNA libraries from which a total of 1048 sequences were analyzed. A large number of cDNAs were obtained that could be related to immune function including structural proteins, proteases and antiproteases, regulators of transcription and translation, cell death regulators, receptors, lectins and immunoglobulins, cytokines and chemokines, cell surface antigens, signal transduction proteins, antimicrobial peptides, and enzymes involved in eicosanoid synthesis. Selected genes that were analyzed by RT-PCR and real time PCR and found to be upregulated by LPS, included vascular cell adhesion molecule, the CCAAT/enhancer binding protein beta, the inhibitor of NF-kB alpha, CD209, a major histocompatibility class II-invariant chain protein, cyclin L1, acute phase serum amyloid A, and prostaglandin endoperoxide synthase 2.
Collapse
Affiliation(s)
- Frederick W Goetz
- Marine Biological Laboratory, Program in Scientific Aquaculture, Woods Hole 02543, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Klöss S, Srivastava R, Mülsch A. Down-regulation of soluble guanylyl cyclase expression by cyclic AMP is mediated by mRNA-stabilizing protein HuR. Mol Pharmacol 2004; 65:1440-51. [PMID: 15155837 DOI: 10.1124/mol.65.6.1440] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed whether the cyclic AMP induced down-regulation of the nitric oxide (NO) receptor soluble guanylyl cyclase (sGC) is mediated by the mRNA-protecting protein HuR. Exposure (up to 24 h) of isolated rat aortic segments to the activator of adenylyl cyclase, forskolin (10 microM), and to both activators of cAMP-stimulated protein kinase (PKA), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3',5'-cyclic monophosphorothioate, Spisomer (Sp-5,6-DCl-cBIMPS; 400 nM), and N6-phenyl-cAMP (10 microM), strongly reduced sGCalpha1beta1 and HuR protein and mRNA expression in a time-dependent and actinomycin D (10 microM)-sensitive fashion. In vitro degradation of sGCalpha1 and beta1 poly(A)+ mRNA by native rat aortic protein was markedly increased by pretreatment of intact aortas with forskolin. Native protein extract from rat aorta shifted the electrophoretic mobility of biotin-labeled riboprobes from the 3'-untranslated region of sGCalpha1 and beta1 mRNA, and these bands was supershifted by a monoclonal antibody directed against the mRNA-stabilizing protein HuR. Forskolin decreased the HuR-sGCalpha1 and beta1 mRNA interaction and HuR protein expression in rat aorta, and this was prevented by the PKA inhibitory cAMP analog 3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In cultured smooth muscle cells from rat aorta, forskolin induced a rapid increase in Fos/p-Fos protein levels and activator protein 1 (AP-1) binding activity. Inhibition of this transcription factor by an AP-1 decoy prevented the forskolin-induced down-regulation of HuR. We conclude that forskolin/cAMP decrease the expression of heterodimeric sGC in rat aortic smooth muscle cells via activation of Fos/AP-1, which decreases the expression of HuR and thus destabilizes the sGCalpha1 and beta1 mRNA.
Collapse
Affiliation(s)
- Stephan Klöss
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang v. Goethe-Universität, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
14
|
Huwiler A, Akool ES, Aschrafi A, Hamada FMA, Pfeilschifter J, Eberhardt W. ATP potentiates interleukin-1 beta-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J Biol Chem 2003; 278:51758-69. [PMID: 14523003 DOI: 10.1074/jbc.m305722200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin (IL)-1 beta. We demonstrate here that the stable ATP analog adenosine 5'-O-(thiotriphosphate) (ATP gamma S) potently amplifies the cytokine-induced gelatinolytic content of mesangial cells mainly by an increase in the MMP-9 steady-state mRNA level. A Luciferase reporter gene containing 1.3 kb of the MMP-9 5'-promoter region showed weak responses to ATP gamma S but conferred a strong ATP-dependent increase in Luciferase activity when under the additional control of the 3'-untranslated region of MMP-9. By in vitro degradation assay and actinomycin D experiments we found that ATP gamma S potently delayed the decay of MMP-9 mRNA. Gel-shift and supershift assays demonstrated that three AU-rich elements (AREs) present in the 3'-untranslated region of MMP-9 are constitutively bound by complexes containing the mRNA stabilizing factor HuR. The RNA binding of these complexes was markedly increased by ATP gamma S. Mutation of each ARE element strongly impaired the RNA binding of the HuR containing complexes. Reporter gene assays revealed that mutation of one ARE did not affect the stimulatory effects by ATP gamma S, but mutation of all three ARE motifs caused a loss of ATP-dependent increase in luciferase activity without affecting IL-1 beta-inducibility. By confocal microscopy we demonstrate that ATP gamma S increased the nucleo cytoplasmic shuttling of HuR and caused an increase in the cytosolic HuR level as shown by cell fractionation experiments. Together, our results indicate that the amplification of MMP-9 expression by extracellular ATP is triggered through mechanisms that likely involve a HuR-dependent rise in MMP-9 mRNA stability.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kloss S, Furneaux H, Mülsch A. Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta. J Biol Chem 2003; 278:2377-83. [PMID: 12441354 DOI: 10.1074/jbc.m206453200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the 3'-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antigens, Surface
- Aorta/enzymology
- Aorta/metabolism
- Aorta/pathology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Dactinomycin/pharmacology
- Down-Regulation
- ELAV Proteins
- ELAV-Like Protein 1
- Enzyme Activators/pharmacology
- Guanylate Cyclase
- Indazoles/pharmacology
- Male
- Molecular Sequence Data
- Muscle, Smooth/cytology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oxadiazoles/pharmacology
- Oxazines/pharmacology
- Poly A/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Soluble Guanylyl Cyclase
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Stephan Kloss
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor Stern-Kai 7, Frankfurt/Main D60590, Germany
| | | | | |
Collapse
|
16
|
Nassar F, Wegnez M. Characterization of two promoters of the Xenopus laevis elrD gene. Biochem Biophys Res Commun 2001; 283:392-8. [PMID: 11327714 DOI: 10.1006/bbrc.2001.4812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus laevis elrD gene belongs to the multigenic elav/Hu family. elrD is exclusively expressed in neural cells, where it could be involved in the posttranscriptional control of mRNAs. Here we report the isolation and characterization of the genomic elrD 5'-flanking region. We localized the transcription initiation sites and thus identified two distinct transcripts, elrD1 and elrD2 by 5' RACE PCR. The two transcripts derive from the use of alternative promoters located 915 bp apart. We show that sequences upstream of the elrD1 and elrD2 transcription units can direct expression of the reporter luciferase gene in Xenopus embryos. We also observed length variation of the ELRD first RNA recognition motif (RRM1).
Collapse
Affiliation(s)
- F Nassar
- Laboratoire d'Embryologie Moléculaire et Expérimentale, UPRES-A 8080, Université Paris-Sud, Bâtiment 445, Orsay, 91405, France
| | | |
Collapse
|