1
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Resveratrol Ameliorates Lipopolysaccharide-Induced Sudden Sensorineural Hearing Loss in In Vitro Model through Multitarget Antiapoptotic Mechanism Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6404588. [PMID: 35646137 PMCID: PMC9135530 DOI: 10.1155/2022/6404588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the effects of resveratrol (RSV) on hair cell apoptosis caused by sudden sensorineural hearing loss (SSNHL) and its effect on lipopolysaccharide-induced apoptosis of HEI-OC1 cells. Methods We used the network pharmacology method to screen molecules related to RSV for the treatment of SSNHL and analyzed these molecules and their enriched biological processes and signaling pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. We selected hub genes related to apoptosis using protein-protein interaction (PPI) analysis for in vitro and molecular docking verification. Results Eighty overlapping genes were identified as potential targets for RSV treatment of SSNHL. Further GO analysis showed that the biological processes were mainly related to toxicity, cell proliferation, and lipopolysaccharide reactions. KEGG analysis showed that the AGE-RAGE signaling pathway in diabetic complications, Kaposi's sarcoma-associated herpesvirus infection, FoxO signaling pathway, PI3K-Akt signaling pathway, and other inflammatory signaling pathways were concentrated. AKT1, STAT3, JUN, TNF, TP53, MAPK3, CASP3, and VEGFA were screened as HUB genes using PPI analysis. The apoptosis-related proteins TNF, CASP3, AKT1, and TP53 were selected for in vitro experiments, which showed that mRNA was significantly different before and after RSV intervention, confirming that the corresponding protein receptors could bind well with RSV. Conclusion RSV mainly affects the prognosis of SSNHL through anti-inflammatory effects and may improve hair cell apoptosis caused by inflammatory factors through multitargeted interventions involving TNF, CASP3, AKT1, and TP53.
Collapse
|
3
|
Identification of differentially expressed genes and the role of PDK4 in CD14+ monocytes of coronary artery disease. Biosci Rep 2021; 41:228119. [PMID: 33739370 PMCID: PMC8024870 DOI: 10.1042/bsr20204124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background. Coronary artery disease (CAD) is a chronic inflammatory disease caused by development of atherosclerosis (AS), which is the leading cause of mortality and disability. Our study aimed to identify the differentially expressed genes (DEGs) in CD14+ monocytes from CAD patients compared with those from non-CAD controls, which might pave the way to diagnosis and treatment for CAD. Methods. The RNA-sequencing (RNA-seq) was performed by BGISEQ-500, followed by analyzing with R package to screening DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by R package. In addition, we validated the results of RNA-seq using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, we explored the function of selected ten genes in LDL-treated CD14+ monocytes by RT-qPCR. Results. a total of 2897 DEGs were identified, including 753 up- and 2144 down-regulated genes in CD14+ monocytes from CAD patients. These DEGs were mainly enriched in plasma membrane and cell periphery of cell component, immune system process of biological process, NF-κB signaling pathway, cell adhesion molecules signaling pathway and cytokine–cytokine receptor interaction signaling pathway. In LDL-treated CD14+ monocytes, the mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) was significantly up-regulated. Conclusion. In the present study, we suggested that PDK4 might play a role in progression of CAD. The study will provide some pieces of evidence to investigate the role and mechanism of key genes in the pathogenesis of CAD.
Collapse
|
4
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B, Hou J, Dai Y, She W. Elucidation of the Hdac2/Sp1/ miR-204-5p/ Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/ in vitro models of acute hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1093-1109. [PMID: 33614251 PMCID: PMC7875768 DOI: 10.1016/j.omtn.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that dysregulation of histone deacetylase 2 (Hdac2) was associated with the prognosis of sudden sensorineural hearing loss. However, the underlying molecular mechanisms are poorly understood. In the present study, we developed an acute hearing loss animal model in guinea pigs by infusing lipopolysaccharides (LPS) into the cochlea and measured the expression of Hdac2 in the sensory epithelium. We observed that the level of Hdac2 was significantly decreased in the LPS-infused cochleae. The levels of apoptosis-inhibition genes Bcl-2 and Bcl-xl were also decreased in the cochlea and correlated positively with the levels of Hdac2. Caspase3 or TUNEL-positive spiral ganglion neurons, hair cells, and supporting cells were observed in the LPS-infused cochleae. These in vivo observations were recapitulated in cell culture experiments. Based on bioinformatics analysis, we found miR-204-5p was engaged in the regulation of Hdac2 on Bcl-2. Molecular mechanism experiments displayed that miR-204-5p could be regulated by Hdac2 through interacting with transcription factor Sp1. Taken together, these results indicated that the Hdac2/Sp1/miR-204-5p/Bcl-2 regulatory axis mediated apoptosis in the cochlea, providing potential insights into the progression of acute hearing loss. To our knowledge, the study describes a miRNA-related mechanism for Hdac2-mediated regulation in the cochlea for the first time.
Collapse
Affiliation(s)
- Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaorui Chen
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yanhong Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: Yanhong Dai, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University: 321 Zhongshan Road, Nanjing 210008, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Corresponding author Wandong She, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|
5
|
Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-κB, mitochondrial ROS, and MAPK pathways. Toxicol Appl Pharmacol 2018; 355:1-8. [PMID: 29906494 DOI: 10.1016/j.taap.2018.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Inflammation is considered to be the common pathophysiological basis for a series of diseases. Documented data showed the anti-inflammatory effects of Salvia miltiorrhiza Bunge (Danshen), a traditional herb. The pharmacological activities of dihydronortanshinone (DNT), a tanshinone isolated from Danshen, remain unknown. In this study, the anti-inflammatory effects and underlying mechanisms of DNT were investigated with a lipopolysaccharide (LPS)-induced RAW264.7 macrophage model. DNT significantly suppressed LPS-induced inflammatory mediators such as nitrite oxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS). LPS-induced reactive oxygen species (ROS) generation was inhibited by DNT, rotenone (Rot), thenoyltrifluoroacetone (TTFA), and antimycin A (AA). Furthermore, DNT inhibited LPS-induced NF-κBp65 phosphorylation, nuclear translocation, as well as JNK1/2 and p38MAPK phosphorylation. In addition, DNT interrupted Toll-like receptor 4 (TLR4) dimerization and molecular docking results suggested that it was buried in the pocket of TLR4-MD2 complex. In conclusion, DNT inhibited LPS-induced inflammation mainly through NF-κB, mitochondrial ROS, and MAPK pathways possibly mediated by interfering LPS-TLR4-MD2 complex.
Collapse
|
6
|
Song H, Park J, Bui PTC, Choi K, Gye MC, Hong YC, Kim JH, Lee YJ. Bisphenol A induces COX-2 through the mitogen-activated protein kinase pathway and is associated with levels of inflammation-related markers in elderly populations. ENVIRONMENTAL RESEARCH 2017; 158:490-498. [PMID: 28709031 DOI: 10.1016/j.envres.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical, and it is one of the highest volume chemicals produced worldwide. Even though several in vivo and in vitro studies showed positive associations of BPA exposure with pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, the mechanism by which BPA induces inflammation is unclear. We investigated the mechanism by which BPA induces inflammation (expression of inflammation-related genes, changes in oxidative stress, and cell proliferation and migration) and evaluated the effect of BPA exposure on inflammation-related markers in epidemiologic studies using repeat urine and serum samples from elderly subjects. BPA induced COX-2 expression via nuclear translocation of NF-κB and activation of mitogen-activated protein kinase (MAPK) by phosphorylation of ERK1/2 and enhanced the migration of lung cancer A549 and breast cancer MDAMB-231 cells. In two epidemiologic studies, we detected associations of BPA with six inflammation-related markers (WBC, CRP, IL-10, ALT, AST, and γ-GTP levels). Our findings probably suggest that BPA exposure induces inflammation and exacerbates tumorigenesis.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea
| | - Phuong T C Bui
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea
| | - KeunOh Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea.
| | - Young Joo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
7
|
Aminophylline restores glucocorticoid sensitivity in a guinea pig model of sudden sensorineural hearing loss induced by lipopolysaccharide. Sci Rep 2017; 7:2736. [PMID: 28578424 PMCID: PMC5457401 DOI: 10.1038/s41598-017-02956-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 04/21/2017] [Indexed: 11/08/2022] Open
Abstract
Glucocorticoids have been used to treat hearing loss and vestibular dysfunction for many years. However, some reports have indicated that a subset of patients with these disorders exhibit glucocorticoid insensitivity or resistance. A reduction in histone deacetylase 2 (HDAC2) activity and expression has been reported to play a critical role in glucocorticoid resistance. Here, we investigated the protective effects of aminophylline on HDAC2 expression and glucocorticoid sensitivity in lipopolysaccharide (LPS)-induced sudden sensorineural hearing loss in guinea pigs. We assessed hearing recovery in LPS-applied guinea pigs, which were either left untreated or were systemically treated with either dexamethasone, aminophylline, or a combination of the two. We utilized fluorescence microscopy and enzyme-linked immunosorbent assay to analyze the distribution patterns of HDAC2 and detect its levels in the cochlea. We used hematoxylin-eosin staining to examine cochlear histopathological changes. In the absence of treatment, significant hearing loss was detected in LPS-exposed animals. A synergistic effect was observed between aminophylline and dexamethasone in maintaining HDAC2 expression levels, preventing hearing loss in LPS-exposed animals and reducing cochlear damage. This study indicates that aminophylline can restore glucocorticoid sensitivity, which provides a new approach to treating patients with hearing disorders who are refractory to glucocorticoids.
Collapse
|
8
|
Lee DS, Yoon CS, Jung YT, Yoon JH, Kim YC, Oh H. Marine-Derived Secondary Metabolite, Griseusrazin A, Suppresses Inflammation through Heme Oxygenase-1 Induction in Activated RAW264.7 Macrophages. JOURNAL OF NATURAL PRODUCTS 2016; 79:1105-1111. [PMID: 27019105 DOI: 10.1021/acs.jnatprod.6b00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new secondary metabolite, named griseusrazin A (1), was isolated from the marine-derived bacterium Streptomyces griseus subsp. griseus. The structure of the compound was determined by analysis of spectroscopic data including MS, COSY, HSQC, HMBC, and (15)N-HMBC data. Griseusrazin A (1) inhibited the production of inflammatory mediators, such as prostaglandin E2 and nitric oxide, which was mediated through the suppression of the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The production of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, in the LPS-stimulated cells was also effectively blocked by griseusrazin A (1). Furthermore, this anti-inflammatory activity of 1 was linked to its inhibitory effects against the nuclear translocation of NF-κB p50 and p65, as wells as NF-κB binding activity. In the further study to elucidate the anti-inflammatory mechanism, 1 was shown to induce heme oxygenase-1 (HO-1) expression through the enhancement of nuclear translocation of nuclear factor E2-related factor 2. Furthermore, the anti-inflammatory activity of 1 in the LPS-stimulated cells was partially reversed by an HO inhibitor, tin protoporphyrin. These results indicate that the anti-inflammatory effect of 1 is associated with Nrf2-mediated HO-1 expression.
Collapse
Affiliation(s)
- Dong-Sung Lee
- College of Pharmacy, Wonkwang University , Iksan, 54538, Republic of Korea
- Department of Biomedical Chemistry, College of Health and Biomedical Science, Konkuk University , Chung-Ju 27478, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University , Iksan, 54538, Republic of Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University , Jangan-gu, Suwon 16419, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University , Jangan-gu, Suwon 16419, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University , Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University , Iksan, 54538, Republic of Korea
| |
Collapse
|
9
|
Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-κB-dependent pathways. Inflammation 2014; 36:1584-91. [PMID: 23892998 DOI: 10.1007/s10753-013-9703-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Baicalein has been used for many years as a popular antiviral and antibacterial in China. Recent investigations revealed that baicalein also has anti-inflammatory activities. Our results indicated that baicalein increases ERE-luciferase activity in an estrogen receptor (ER)-dependent manner when either ERα or ERβ were coexpressed in Hela cells. This study examined whether baicalein exerts an anti-inflammatory effect in RAW264.7 cells through an estrogen receptor-dependent pathway and through regulation of NF-ĸB activation. In lipopolysaccharide (LPS)-induced RAW264.7 cells, baicalein exerts anti-inflammatory effects by inhibiting iNOS, COX-2, and TNF-α mRNA expression; NO production; as well as inflammatory cytokine (IL-1β, PGE2, and TNF-α) production through an ER-dependent pathway. These effects are accompanied with the inhibition of the transcription factor NF-ĸB activation and IκBα phosphorylation. We therefore conclude that baicalein inhibits LPS-induced inflammatory cytokine production via regulation of the NF-ĸB pathway and estrogen-like activity, suggesting that it may be useful for preventing inflammation-related diseases.
Collapse
|
10
|
Floc'h JL, Tan W, Telang RS, Vlajkovic SM, Nuttall A, Rooney WD, Pontré B, Thorne PR. Markers of cochlear inflammation using MRI. J Magn Reson Imaging 2013; 39:150-61. [PMID: 23589173 DOI: 10.1002/jmri.24144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/01/2013] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To quantify spatial and temporal inflammation-induced changes in vascular permeability and macrophage infiltration in guinea-pig (GP) cochlea using MRI. MATERIALS AND METHODS GPs were injected with lipopolysaccharide (LPS) to induce cochlear inflammation. One group was injected with a gadolinium based contrast agent (GBCA) and dynamic contrast enhanced (DCE)-MRI was performed at 4, 7, and 10 days after LPS treatment. A two-compartment pharmacokinetic model was used to determine the apparent rate constant of GBCA extravasation (K(trans) ). A second group was injected with ultrasmall superparamagnetic iron oxide particles (USPIOs) and studied at 2, 3, and 7 days after LPS treatment to detect tissue USPIO uptake and correlate with histology. For both groups, control GPs were scanned similarly. RESULTS The signal enhancement increased substantially and more rapidly at day 4 in LPS-treated than in control cochlea shortly following GBCA injection. K(trans) of LPS-treated cochlea was maximum on day 4 at 0.0218 ± 0.0032 min(-1) and then decreased to control level at 0.0036 ± 0.0004 min(-1) by day 10. In the second group, the relative signal intensity and T2 in cochlear perilymphatic spaces on day 2 decreased, on average, by 54% and 45%, respectively, compared with baseline and then remained under control levels by day 7. This suggests the infiltration of inflammatory cells, although unconfirmed by histology. CONCLUSION This provides the first measurement of cochlear vascular permeability using MRI and a quantitative evaluation of the development of cochlear inflammation. MRI holds considerable potential for the assessment of disease processes such as clinical diagnosis of conditions such as labyrinthitis.
Collapse
Affiliation(s)
- Johann Le Floc'h
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Heinrich UR, Helling K. Nitric oxide--a versatile key player in cochlear function and hearing disorders. Nitric Oxide 2012; 27:106-16. [PMID: 22659013 DOI: 10.1016/j.niox.2012.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/10/2012] [Accepted: 05/24/2012] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.
Collapse
Affiliation(s)
- Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of The Johannes Gutenberg-University Mainz, Germany.
| | | |
Collapse
|
12
|
Kamio T, Watanabe KI, Okubo K. Acoustic Stimulation Promotes DNA Fragmentation in the Guinea Pig Cochlea. J NIPPON MED SCH 2012; 79:349-56. [DOI: 10.1272/jnms.79.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tomonobu Kamio
- Department of Otorhinolaryngology, Graduate School of Medicine, Nippon Medical School
- Kamio Memorial Hospital
| | - Ken-ichi Watanabe
- Department of Otorhinolaryngology, Graduate School of Medicine, Nippon Medical School
| | - Kimihiro Okubo
- Department of Otorhinolaryngology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
13
|
Lee DS, Jeong GS, Li B, Lee SU, Oh H, Kim YC. Asperlin from the marine-derived fungus Aspergillus sp. SF-5044 exerts anti-inflammatory effects through heme oxygenase-1 expression in murine macrophages. J Pharmacol Sci 2011; 116:283-95. [PMID: 21705844 DOI: 10.1254/jphs.10219fp] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Asperlin is a fungal metabolite isolated from Aspergillus sp. SF-5044. In the present study, we isolated asperlin from the marine-derived fungus Aspergillus sp. SF-5044 and demonstrated that it inhibited inducible nitric oxide synthase (iNOS) expression, reduced iNOS-derived NO, suppressed cyclooxygenase (COX)-2 expression, and reduced COX-derived prostaglandin (PG) E₂ production in lipopolysaccharide (LPS)-stimulated RAW264.7 and murine peritoneal macrophages. Similarly, asperlin reduced the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. In addition, asperlin inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of p65 caused by the stimulation of LPS in RAW264.7 macrophages. Furthermore, asperlin induced heme oxygenase (HO)-1 expression through nuclear translocation of nuclear factor E2-related factor 2 and increased HO activity in RAW264.7 macrophages. The effects of asperlin on the LPS-induced expression of iNOS and COX-2 and production of NO, PGE₂, TNF-α, and IL-1β were partially reversed by a HO-1 inhibitor, tin protoporphyrin. These findings suggest that asperlin-induced HO-1 expression plays a role in the anti-inflammatory effects of asperlin in macrophages.
Collapse
Affiliation(s)
- Dong-Sung Lee
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Feng H, Yin SH, Tang AZ, Cai HW, Chen P, Tan SH, Xie LH. Caspase-3 activation in the guinea pig cochlea exposed to salicylate. Neurosci Lett 2010; 479:34-9. [PMID: 20478357 DOI: 10.1016/j.neulet.2010.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/27/2010] [Accepted: 05/08/2010] [Indexed: 12/19/2022]
Abstract
In the current study, we explored whether chronic salicylate exposure could induce apoptosis in outer hair cells (OHCs) and spiral ganglion neurons (SGNs) of the cochlea. Guinea pig received sodium salicylate (400 mg/kg/d) or saline vehicle for 10 consecutive days. Programmed cell death (PCD) executioner was evaluated with immunohistochemistry detection of activated caspase-3. Apoptosis was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Repeated salicylate administration activated caspase-3 and caused apoptosis in OHCs and SGNs (p<0.01 vs. saline control for both measures and in both cell types). Cell counting showed a significant loss in OHCs (p<0.01 vs. saline control), but not in inner hair cells (IHCs). Transmission electron microscopy (TEM) revealed chromatin condensation and nucleus margination in salicylate-treated cochlea. Scanning electron microscopy (SEM) demonstrated stereociliary bundles breakdown and fusion at the apical of OHCs, villous matter was discovered to attach on the surface of SGNs. These findings suggest that long-term administration of high-dose salicylate can activate caspase-3 pathway to induce OHC and SGN apoptosis.
Collapse
Affiliation(s)
- Hao Feng
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Juhn S, Tsuprun V, Lee Y, Hunter B, Schachern P. Interaction between middle and inner ears in otitis media. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860410000375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
De Felice C, De Capua B, Costantini D, Martufi C, Toti P, Tonni G, Laurini R, Giannuzzi A, Latini G. Recurrent otitis media with effusion in preterm infants with histologic chorioamnionitis--a 3 years follow-up study. Early Hum Dev 2008; 84:667-71. [PMID: 18760552 DOI: 10.1016/j.earlhumdev.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recurrent otitis media with effusion (OME) is a leading cause of acquired hearing loss in childhood. Histological chorioamnionitis (HCA) is an important cause of preterm delivery and neonatal morbidity and mortality. Here, we tested the hypothesis of an association between recurrent OME during the first 3 years of life and HCA in very low birth weight (VLBW) infants. METHODS A total of 110 randomly selected VLBW preterm newborns with HCA and 135 gestational age and gender-matched, HCA-negative VLBW infants were evaluated prospectively during the first 3 years of life for the presence of OME, as diagnosed on the basis of otoscopy, type B or C tympanogram, ipsilateral absence of transient evoked otoacoustic emissions responses, and ipsilaterally increased threshold at diagnostic auditory brain responses evaluation. Potential risk factors for OME were also examined in the two groups. RESULTS The HCA-positive infants showed a approximately six times higher frequency of recurrent OME (P<0.0001), increased frequency (>5/yr) of clinical otitis media episodes (P=0.000020), approximately five times higher frequency of adenoid hypertrophy (P<0.00001), a significant seasonal pattern of birth with autumn predominance (P<0.00001), and the first OME occurred earlier (P<0.0001), as compared to the HCA-negative counterparts. Recurrent OME was significantly associated with HCA (O.R.=17.76, 95% CI: 8.98-35.13, P<0.00001), adenoid hypertrophy (O.R.=9.96, 95% CI: 5.17-19.18, P<0.00001), frequency of acute otitis episodes >5/yr (O.R.=8.91, 95% CI: 1.96-40.41, P=0.0005), and birth in autumn (O.R.=5.58, 95% CI: 2.79-11.12, P<0.00001). CONCLUSIONS These findings indicate that HCA is a previously unrecognized risk factor for the development of recurrent bilateral OME in VLBW preterm infants during the first 3 years of life.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Siaud P, Maurel D, Lucciano M, Kosa E, Cazals Y. Enhanced cochlear acoustic sensitivity and susceptibility to endotoxin are induced by adrenalectomy and reversed by corticosterone supplementation in rat. Eur J Neurosci 2007; 24:3365-71. [PMID: 17229085 DOI: 10.1111/j.1460-9568.2006.05224.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoid receptors are widely distributed in the cochlea but their role remains poorly known. Previous studies provided contradictory reports on a possible cochlear acoustic hypersensitivity induced by adrenal insufficiency, while several experiments agree on a significant action of glucocorticoid receptors in adverse conditions such as acoustic trauma and restraint stress. The present experiments confirmed a cochlear acoustic hypersensitivity induced by adrenalectomy and reversed by corticosterone supplementation. These observations point to a significant role of corticosteroids in basal cochlear functioning. The glucocorticoids are known to be essential for limiting and resolving inflammatory processes. The endotoxin Escherichia coli lipopolysaccharide is widely used to induce inflammatory reactions. However, in various organs several toxic processes of this endotoxin are not influenced by glucocorticoids. From previous experiments on the cochlea there is no evidence that glucocorticoids are an essential factor against endotoxin cochlear toxicity. In the present experiments it was found that adrenalectomy greatly increased the cochlear susceptibility to endotoxin; the effect was reversed by providing corticosterone supplementation. This shows the essential role of corticosterone in this cochlear inflammation model. In previous studies local administration (at the cochlear base) of endotoxin was used and losses of cochlear acoustic sensitivity were found predominantly at high frequencies; in contrast, the systemic injection used in this study produced a cochlear loss of acoustic sensitivity at all frequencies, indicating a uniform cochlear sensitivity to the toxic effects of endotoxin.
Collapse
Affiliation(s)
- Philippe Siaud
- Inserm EPI9902, Faculté de Médecine Marseille Nord, Boulevard P Dramard 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
18
|
Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 2006; 542:1-7. [PMID: 16797002 DOI: 10.1016/j.ejphar.2006.04.044] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/12/2006] [Accepted: 04/28/2006] [Indexed: 11/24/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) activation by NF-kappaB-inducing kinase (NIK)-IkappaB alpha kinase (IKK) pathway and mitogen-activated protein kinases (MAPKs) pathway are important in inflammation. We recently found that the tanshinone IIA, a diterpene isolated from Salvia miltiorrhiza (S. miltiorrhiza), reduced the production of pro-inflammatory mediators in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). However, little is known about the inhibitory mechanisms of tanshinone IIA on the production of pro-inflammatory mediators. To investigate the inhibitory mechanism, we determined the inhibitory effects of tanshinone IIA on the activation of NF-kappaB and IkappaB alpha phosphorylation, and also examined phosphorylation of NIK and IKK as well as the activation of MAPKs such as p38 MAPK (p38), extracellular signal-regulated kinases 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) in RAW 264.7 cells stimulated with LPS. Tanshinone IIA inhibited NF-kappaB-DNA complex, NF-kappaB binding activity, and the phosphorylation of IkappaB alpha in a dose dependent manner. Tanshinone IIA also inhibited the translocation of NF-kappaB from cytosol to nucleus. Moreover, the phosphorylation of NIK and IKK as well as the phosphorylation of p38, ERK1/2, and JNK in the LPS-stimulated RAW 264.7 cells were suppressed by the tanshinone IIA in a dose dependent manner. These results suggest that tanshinone IIA may inhibit LPS-induced IkappaB alpha degradation and NF-kappaB activation via suppression of the NIK-IKK pathway as well as the MAPKs (p38, ERK1/2, and JNK) pathway in RAW 264.7 cells and these properties may provide a potential mechanism that explains the anti-inflammatory activity of tanshinone IIA.
Collapse
Affiliation(s)
- Seon Il Jang
- Department of Skin and Beauty, Seojeong College, Yangju city, Gyeonggi 482-860, South Korea
| | | | | | | | | |
Collapse
|
19
|
Ryan AF, Jung TTK, Juhn SK, Li JD, Andalibi A, Lin J, Bakaletz LO, Post CJ, Ehrlich GD. Recent advances in otitis media. 4C. Interaction between middle ear and inner ear in otitis media. Ann Otol Rhinol Laryngol 2005; 194:56-9. [PMID: 15700936 DOI: 10.1177/00034894051140s108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Allen F Ryan
- Division of Otolaryngology, University of California, San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van De Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J, Polak M, Malgrange B, Lefebvre PP, Staecker H, Balkany TJ. Caspases, the Enemy Within, and Their Role in Oxidative Stress-Induced Apoptosis of Inner Ear Sensory Cells. Otol Neurotol 2004; 25:627-32. [PMID: 15241246 DOI: 10.1097/00129492-200407000-00035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review covers the general roles of members of the cysteine protease family of caspases in the process of apoptosis (programmed cell death) looking at their participation in both the "extrinsic" cell death receptor and the "intrinsic" mitochondrial cell death pathways. It defines the difference between initiator and effector caspases and shows the progression of caspase activations that ends up in the apoptotic cell death and elimination of a damaged cell. The review then presents what is currently know about the participation of caspases in the programmed cell death of inner ear sensory cells during the process of normal development and maturation of the inner ear and their importance in this process as illustrated by the results of caspase-3 gene knockout experiments. The participation of specific caspases and the sequence of their activation in the elimination (apoptosis) of damaged sensory cells from adult inner ears after an injury that generates oxidative stress are reviewed. Both the possibility and the potential efficacy of caspase inhibition with a broad-spectrum pancaspase inhibitor as an interventional therapy to treat and rescue oxidative stress-damaged inner ear sensory cells from apoptosis are presented and discussed.
Collapse
Affiliation(s)
- T R Van De Water
- Department of Otolaryngology, University of Miami Ear Institute, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takumida M, Anniko M, Shimizu A, Watanabe H. Neuroprotection of vestibular sensory cells from gentamicin ototoxicity obtained using nitric oxide synthase inhibitors, reactive oxygen species scavengers, brain-derived neurotrophic factors and calpain inhibitors. Acta Otolaryngol 2003; 123:8-13. [PMID: 12625566 DOI: 10.1080/0036554021000028078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In order to devise a new treatment for inner ear disorders, the efficacy of a nitric oxide synthase inhibitor (L-N(G)-nitroarginine methylester [L-NAME]), a radical scavenger (D-methionine), a neurotrophin (brain-derived neurotrophic factor [BDNF]) and a calpain inhibitor (leupeptin) for protection from hair cell damage was investigated. MATERIAL AND METHODS The effects of these drugs on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular hair cell damage was examined by using an in vitro LIVE/DEAD system. RESULTS L-NAME inhibited the production of NO, D-methionine and BDNF restricted the production of ROS and leupeptin inhibited neither NO nor ROS. All the drugs used limited the vestibular hair cell damage caused by gentamicin. The combinations L-NAME + BDNF, L-NAME + leupeptin and D-methionine + BDNF had a significantly stronger preventive effect on hair cell damage. CONCLUSION It is suggested that combined treatment with a radical inhibitor and either a neurotrophin or calpain inhibitor may help to treat inner ear disorders more effectively.
Collapse
Affiliation(s)
- Masaya Takumida
- Department of Otolaryngology, Hiroshima University Faculty of Medicine, Hiroshima, Japan.
| | | | | | | |
Collapse
|