1
|
Zhang H, Ye YT, Deng JL, Zhao P, Mao YF, Chen ZX. Rapid unfolding of pig pancreas α-amylase: Kinetics, activity and structure evolution. Food Chem 2022; 368:130795. [PMID: 34411861 DOI: 10.1016/j.foodchem.2021.130795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
α-Amylase plays an important role in food processing and in-vivo digestion. Many biological functions of α-amylase are affected by unfolding. The pre-steady-state rapid unfolding kinetics of α-amylase remains unknown. In this study, the rapid unfolding kinetics of porcine pancreatic α-amylase (PPA) with guanidine hydrochloride (GdmHCl) were investigated by stopped-flow spectroscopy. Structural characterization of PPA by fluorescence spectroscopy, and molecular dynamics simulation showed that the unfolding process of PPA might start from the internal active center, where the β-sheet structure was destroyed, followed by the exposure of hydrophobic amino acid residues. Further research revealed that GdmHCl denaturized PPA not by complexing with PPA. The surrounding H-bond network of water was changed by GdmHCl. This research improves our understanding of the unfolding kinetics of the PPA on the microsecond scale. It also provides the evidence experimentally of the surrounding water contribution to protein denaturization.
Collapse
Affiliation(s)
- Hai Zhang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Tong Ye
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jun-Ling Deng
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pei Zhao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Fen Mao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Ban X, Xie X, Li C, Gu Z, Hong Y, Cheng L, Kaustubh B, Li Z. The desirable salt bridges in amylases: Distribution, configuration and location. Food Chem 2021; 354:129475. [PMID: 33744660 DOI: 10.1016/j.foodchem.2021.129475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 12/07/2022]
Abstract
The α-amylases are the most widely used industrial enzymes, and are particularly useful as liquifying enzymes in industrial processes based upon starch. Since starch liquefication is carried out at evaluated temperatures, typically above 60 °C, there is substantial demand for thermostable α -amylases. Most naturally occurring α -amylases exhibit moderate thermostability, so substantial effort has been invested in attempts to increase their thermostability. One structural feature that has the potential to increase protein thermostability is the introduction of salt bridges. However, not every salt bridge contributes to protein thermostability. The salt bridges in amylases have their characteristics in terms of distribution, configuration and location. The summary of these features helps to introduce new salt bridges based on the characteristics. This review focuses on salt bridges of α-amylases, both naturally present and introduced using mutagenesis. Its aim is to provide a bird's eye view of distribution, configuration, location of desirable salt bridges.
Collapse
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofang Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, USA
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
3
|
Duke SH, Vinje MA, Henson CA. Tracking Amylolytic Enzyme Activities during Congress Mashing with North American Barley Cultivars: Comparisons of Patterns of Activity and β-Amylases with DifferingBmy1Intron III Alleles and Correlations of Amylolytic Enzyme Activities. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0131-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | - Cynthia A. Henson
- USDA-ARS CCRU and Department of Agronomy, University of Wisconsin, Madison
| |
Collapse
|
4
|
Duke SH, Vinje MA, Henson CA. Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to Sugar Production during Congress Mashing with North American Barley Cultivars. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0906-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Madison, WI
| | - Cynthia A. Henson
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, and Department of Agronomy, University of Wisconsin, Madison, WI
| |
Collapse
|
5
|
Duke SH, Vinje MA, Henson CA. Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to Osmolyte Concentration and Malt Extract during Congress Mashing with North American Barley Cultivars. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2013-0912-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison
- USDA-ARS CCRU
| |
Collapse
|
6
|
Duke SH, Henson CA. Tracking the Progress of Wort Sugar Production during Congress Mashing with North American Barley Cultivars and Comparisons to Wort Osmolyte Concentrations and Malt Extract. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-0829-01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison, WI
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Madison
| |
Collapse
|
7
|
Duke SH, Henson CA, Vinje MA. Comparisons of Barley Malt Amylolytic Enzyme Thermostabilities to Wort Osmolyte Concentrations, Malt Extract, ASBC Measures of Malt Quality, and Initial Enzyme Activities. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2014-1027-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison, WI
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | | |
Collapse
|
8
|
Vinje MA, Duke SH, Henson CA. Comparison of Factors Involved in Starch Degradation in Barley Germination under Laboratory and Malting Conditions,. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0318-01] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Stanley H. Duke
- University of Wisconsin-Madison, Department of Agronomy, Madison, WI
| | - Cynthia A. Henson
- University of Wisconsin-Madison, Department of Agronomy, Madison, WI
- USDA-ARS, CCRU
| |
Collapse
|
9
|
Duke SH, Henson CA, Bockelman HE. Comparisons of Modern U. S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition: III. Wort Sugar Production during Mashing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2017.1402582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI, U.S.A
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison, WI, U.S.A
- United States Department of Agriculture–Agricultural Research Service Cereal Crops Research Unit, Madison, WI, U.S.A
| | - Harold E. Bockelman
- United States Department of Agriculture–Agricultural Research Service Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, U.S.A
| |
Collapse
|
10
|
Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase. PLoS One 2015; 10:e0129203. [PMID: 26053142 PMCID: PMC4460087 DOI: 10.1371/journal.pone.0129203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/07/2015] [Indexed: 11/19/2022] Open
Abstract
Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0–9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.
Collapse
|
11
|
Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T. Proteomic Identification of α-Amylase Isoforms Encoded byRAmy3B/3Cfrom Germinating Rice Seeds. Biosci Biotechnol Biochem 2014; 68:112-8. [PMID: 14745172 DOI: 10.1271/bbb.68.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We isolated and identified 10 alpha-amylase isoforms by using beta-cyclodextrin Sepharose affinity column chromatography and two-dimensional polyacrylamide gel electrophoresis from germinating rice (Oryza sativa L.) seeds. Immunoblots with anti-alpha-amylase I-1 and II-4 antibodies indicated that 8 isoforms in 10 are distinguishable from alpha-amylase I-1 and II-4. Peptide mass fingerprinting analysis showed that there exist novel isoforms encoded by RAmy3B and RAmy3C genes. The optimum temperature for enzyme reaction of the RAmy3B and RAmy3C coding isoforms resembled that of alpha-amylase isoform II-4 (RAmy3D). Furthermore, complex protein polymorphism resulted from a single alpha-amylase gene was found to occur not only in RAmy3D, but also in RAmy3B.
Collapse
Affiliation(s)
- Yohei Nanjo
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | | | | | | |
Collapse
|
12
|
Bakkialakshmi S, Shanthi B, Bhuvanapriya T. Study of fluorescence quenching of Barley α-amylase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 90:12-17. [PMID: 22297090 DOI: 10.1016/j.saa.2011.12.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/12/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (K(g) &K(e)) have been calculated. From the calculated binding constants (K(g) &K(e)) the free energy changes for the ground (ΔG(g)) and excited (ΔG(e)) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.
Collapse
Affiliation(s)
- S Bakkialakshmi
- Department of Physics, Annamalai University, Annamalainagar, Tamilnadu, India.
| | | | | |
Collapse
|
13
|
Nielsen MM, Seo ES, Dilokpimol A, Andersen J, Abou Hachem M, Naested H, Willemoës M, Bozonnet S, Kandra L, Gyémánt G, Haser R, Aghajari N, Svensson B. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701789528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Hachem MA, Bozonnet S, Willemoës M, Kramhøft B, Fukuda K, Bønsager BC, Jensen MT, Nøhr J, Tranier S, Juge N, Robert X, Haser R, Aghajari N, Svensson B. Interactions of barley α-amylase isozymes with Ca2 + , substrates and proteinaceous inhibitors. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500516163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Conformational stability and integrity of α-amylase from mung beans: Evidence of kinetic intermediate in GdmCl-induced unfolding. Biophys Chem 2008; 137:95-9. [DOI: 10.1016/j.bpc.2008.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/16/2008] [Accepted: 07/24/2008] [Indexed: 11/20/2022]
|
16
|
Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhøft B, Willemoës M, Tranier S, Haser R, Svensson B. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J 2007; 274:5055-67. [PMID: 17803687 DOI: 10.1111/j.1742-4658.2007.06024.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some starch-degrading enzymes accommodate carbohydrates at sites situated at a certain distance from the active site. In the crystal structure of barley alpha-amylase 1, oligosaccharide is thus bound to the 'sugar tongs' site. This site on the non-catalytic domain C in the C-terminal part of the molecule contains a key residue, Tyr380, which has numerous contacts with the oligosaccharide. The mutant enzymes Y380A and Y380M failed to bind to beta-cyclodextrin-Sepharose, a starch-mimic resin used for alpha-amylase affinity purification. The K(d) for beta-cyclodextrin binding to Y380A and Y380M was 1.4 mm compared to 0.20-0.25 mm for the wild-type, S378P and S378T enzymes. The substitution in the S378P enzyme mimics Pro376 in the barley alpha-amylase 2 isozyme, which in spite of its conserved Tyr378 did not bind oligosaccharide at the 'sugar tongs' in the structure. Crystal structures of both wild-type and S378P enzymes, but not the Y380A enzyme, showed binding of the pseudotetrasaccharide acarbose at the 'sugar tongs' site. The 'sugar tongs' site also contributed importantly to the adsorption to starch granules, as Kd = 0.47 mg.mL(-1) for the wild-type enzyme increased to 5.9 mg.mL(-1) for Y380A, which moreover catalyzed the release of soluble oligosaccharides from starch granules with only 10% of the wild-type activity. beta-cyclodextrin both inhibited binding to and suppressed activity on starch granules for wild-type and S378P enzymes, but did not affect these properties of Y380A, reflecting the functional role of Tyr380. In addition, the Y380A enzyme hydrolyzed amylose with reduced multiple attack, emphasizing that the 'sugar tongs' participates in multivalent binding of polysaccharide substrates.
Collapse
Affiliation(s)
- Sophie Bozonnet
- Enzyme and Protein Chemistry, BioCentrum-DTU, Technical University of Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bak-Jensen KS, Laugesen S, Ostergaard O, Finnie C, Roepstorff P, Svensson B. Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS J 2007; 274:2552-65. [PMID: 17437525 DOI: 10.1111/j.1742-4658.2007.05790.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ten genes from two multigene families encode barley alpha-amylases. To gain insight into the occurrence and fate of individual isoforms during seed germination, the alpha-amylase repertoire was mapped by using a proteomics approach consisting of 2D gel electrophoresis, western blotting, and mass spectrometry. Mass spectrometric analysis confirmed that the 29 alpha-amylase positive 2D gel spots contained products of one (GenBank accession gi|113765) and two (gi|4699831 and gi|166985) genes encoding alpha-amylase 1 and 2, respectively, but lacked products from seven other genes. Eleven spots were identified only by immunostaining. Mass spectrometry identified 12 full-length forms and 12 fragments from the cultivar Barke. Products of both alpha-amylase 2 entries co-migrated in five full-length and one fragment spot. The alpha-amylase abundance and the number of fragments increased during germination. Assessing the fragment minimum chain length by peptide mass fingerprinting suggested that alpha-amylase 2 (gi|4699831) initially was cleaved just prior to domain B that protrudes from the (betaalpha)(8)-barrel between beta-strand 3 and alpha-helix 3, followed by cleavage on the C-terminal side of domain B and near the C-terminus. Only two shorter fragments were identified of the other alpha-amylase 2 (gi|166985). The 2D gels of dissected tissues showed alpha-amylase degradation to be confined to endosperm. In contrast, the aleurone layer contained essentially only full-length alpha-amylase forms. While only products of the above three genes appeared by germination also of 15 other barley cultivars, the cultivars had distinct repertoires of charge and molecular mass variant forms. These patterns appeared not to be correlated with malt quality.
Collapse
|
18
|
Abou Hachem M, Bozonnet S, Willemoës M, C. Bønsager B, Munch Nielsen M, Fukuda K, Kramhøft B, Maeda K, W. Sigurskjold B, Hägglund P, Finnie C, Mori H, Robert X, H. Jensen M, Tranier S, Aghajari N, Haser R, Svensson B. Interactions between Barley .ALPHA.-Amylases, Substrates, Inhibitors and Regulatory Proteins. J Appl Glycosci (1999) 2006. [DOI: 10.5458/jag.53.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Fukuda K, Jensen MH, Haser R, Aghajari N, Svensson B. Biased mutagenesis in the N-terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley alpha-amylase 2 in yeast. Protein Eng Des Sel 2005; 18:515-26. [PMID: 16155115 DOI: 10.1093/protein/gzi057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant barley alpha-amylase 1 (rAMY1) and 2 (rAMY2), despite 80% sequence identity, are produced in very different amounts of 1.1 and <0.05 mg/l, respectively, by Saccharomyces cerevisiae strain S150-2B. The low yield of AMY2 practically excludes mutational analysis of structure-function relationships and protein engineering. Since different secretion levels of AMY1/AMY2 chimeras were previously ascribed to the N-terminal sequence, AMY1 residues were combinatorially introduced at the 10 non-conserved positions in His14-Gln49 of AMY2 using degenerate oligonucleotide gene shuffling (DOGS) coupled with homologous recombination in S.cerevisiae strain INVSc1. Activity screening of a partial library of 843 clones selected six having a large halo size on starch plates. Three mutants, F21M/Q44H, A42P/A47S and A42P rAMY2, also gave higher activity than wild-type in liquid culture. Only A42P showed wild-type stability and enzymatic properties. The replacement is located to a beta-->alpha loop 2 that interacts with domain B (beta-->alpha loop 3) protruding from the catalytic (beta/alpha)(8)-barrel. Most remarkably Pichia pastoris strain GS115 secreted 60 mg/l A42P compared with 3 mg/l of wild-type rAMY2. The crystal structure of A42P rAMY2 was solved and found to differ marginally from the AMY2 structure, suggesting that the high A42P yield stems from stabilization of the mature and/or intermediate form owing to the introduced proline residue. Moreover, the G to C substitution for the A42P mutation might have a positive impact on protein translation.
Collapse
Affiliation(s)
- Kenji Fukuda
- Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | | | | | | | |
Collapse
|
20
|
Robert X, Haser R, Mori H, Svensson B, Aghajari N. Oligosaccharide binding to barley alpha-amylase 1. J Biol Chem 2005; 280:32968-78. [PMID: 16030022 DOI: 10.1074/jbc.m505515200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers."
Collapse
Affiliation(s)
- Xavier Robert
- Laboratoire de BioCristallographie, IFR-128 BioSciences Lyon-Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS-UCBL1, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
21
|
Bordbar AK, Omidiyan K, Hosseinzadeh R. Study on interaction of α-amylase from Bacillus subtilis with cetyl trimethylammonium bromide. Colloids Surf B Biointerfaces 2005; 40:67-71. [PMID: 15620842 DOI: 10.1016/j.colsurfb.2004.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/10/2004] [Indexed: 11/17/2022]
Abstract
The interaction of cetyl trimethylammonium bromide (CTAB) with alpha-amylase from Bacillus subtilis was investigated at 25 degrees C and various experimental conditions, such as pH, ionic strength and urea concentration. The binding data were measured using CTAB-membrane selective electrodes as a simple, fast, cheap and accurate method. The obtained binding isotherms were analyzed using Wyman binding potential concept. The results represent the highest binding affinity at 10(-3) M of NaBr respect to other salt concentrations. The less binding affinity at pH 9.7 with respect to pH 6.5 is related to increasing of protein self aggregation with pH. The binding data analysis at various urea concentrations also shows that the predominate unfolding of alpha-amylase occurred in the urea concentration range of 3-5 M.
Collapse
Affiliation(s)
- Abdol-Khalegh Bordbar
- Department of Chemistry, University of Isfahan, Hezarjarib Avenue, Isfahan 81746-73441, Iran.
| | | | | |
Collapse
|
22
|
Bordbar AK, Hosseinzadeh R, Omidiyan K. Potentiometric Study on Interaction of Dodecyltrimethylammonium Bromide with α-Amylase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.2027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Bak-Jensen KS, André G, Gottschalk TE, Paës G, Tran V, Svensson B. Tyrosine 105 and Threonine 212 at Outermost Substrate Binding Subsites –6 and +4 Control Substrate Specificity, Oligosaccharide Cleavage Patterns, and Multiple Binding Modes of Barley α-Amylase 1. J Biol Chem 2004; 279:10093-102. [PMID: 14660599 DOI: 10.1074/jbc.m312825200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites -6 and +4 (substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and <1% activity (k(cat)/K(m)) on starch, amylose DP17, and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90% activity, respectively. Thus engineering of aromatic stacking interactions at the ends of the 10-subsite long binding cleft affects activity very differently, dependent on the substrate. Y105A dominates in dual subsite -6/+4 [Y105A/T212(Y/W)]AMY1 mutants having almost retained and low activity on starch and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr(105) is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/T212(Y/W)]AMY1 double mutants synergistically enhanced productive binding of the substrate aglycone. The enzymatic properties of the series of AMY1 mutants suggest that longer substrates adopt several binding modes. This is in excellent agreement with computed distinct multiple docking solutions observed for maltododecaose at outer binding areas of AMY1 beyond subsites -3 and +3.
Collapse
|