1
|
Udovicic M, Sever M, Kavur L, Loncaric K, Barisic I, Balenovic D, Zivanovic Posilovic G, Strinic D, Uzun S, Batelja Vuletic L, Sikiric S, Skrtic A, Drmic D, Boban Blagaic A, Lovric Bencic M, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Monocrotaline-Induced Pulmonary Hypertension in Rats Leads to Prevention and Reversal. Biomedicines 2021; 9:822. [PMID: 34356886 PMCID: PMC8301325 DOI: 10.3390/biomedicines9070822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background. Monocrotaline selectively injures the lung's vascular endothelium and induces pulmonary arterial hypertension. The stable gastric pentadecapeptide BPC 157 acts as a prototype cytoprotective agent that maintains endothelium, and its application may be a novel therapy. Besides, BPC 157 prevents and reverses thrombosis formation, maintains platelet function, alleviates peripheral vascular occlusion disturbances, and has anti-arrhythmic and anti-inflammatory effects. Monocrotaline-induced pulmonary arterial hypertension in rats (wall thickness, total vessel area, heart frequency, QRS axis deviation, QT interval prolongation, increase in right ventricle systolic pressure and bodyweight loss) can be counteracted with early or delayed BPC 157 therapy. Methods and Results. After monocrotaline (80 mg/kg subcutaneously), BPC 157 (10 μg/kg or 10 ng/kg, days 1-14 or days 1-30 (early regimens), or days 14-30 (delayed regimen)) was given once daily intraperitoneally (last application 24 h before sacrifice) or continuously in drinking water until sacrifice (day 14 or 30). Without therapy, the outcome was the full monocrotaline syndrome, marked by right-side heart hypertrophy and massive thickening of the precapillary artery's smooth muscle layer, clinical deterioration, and sometimes death due to pulmonary hypertension and right-heart failure during the 4th week after monocrotaline injection. With all BPC 157 regimens, monocrotaline-induced pulmonary arterial hypertension (including all disturbed parameters) was counteracted, and consistent beneficial effects were documented during the whole course of the disease. Pulmonary hypertension was not even developed (early regimens) as quickly as the advanced pulmonary hypertension was rapidly attenuated and then completely eliminated (delayed regimen). Conclusions. Thus, pentadecapeptide BPC 157 prevents and counteracts monocrotaline-induced pulmonary arterial hypertension and cor pulmonale in rats.
Collapse
Affiliation(s)
- Mario Udovicic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovro Kavur
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Diana Balenovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Gordana Zivanovic Posilovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Dean Strinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Martina Lovric Bencic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| |
Collapse
|
2
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Ishihara T, Hayashi E, Yamamoto S, Kobayashi C, Tamura Y, Sawazaki R, Tamura F, Tahara K, Kasahara T, Ishihara T, Takenaga M, Fukuda K, Mizushima T. Encapsulation of beraprost sodium in nanoparticles: Analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J Control Release 2015; 197:97-104. [DOI: 10.1016/j.jconrel.2014.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/30/2014] [Accepted: 10/27/2014] [Indexed: 11/29/2022]
|
4
|
Abstract
Bosentan (Tracleer, Actelion Pharmaceuticals Ltd) is an oral dual endothelin receptor antagonist approved for use in functional class III to IV pulmonary arterial hypertension. In two placebo-controlled trials, patients receiving bosentan showed improved functional class, 6-minute walk distance and hemodynamics over a 12- to 16-week period. Follow-up data over 3 years has shown few deteriorations,with the majority of patients maintaining their response to bosentan alone. Investigations exploring the use of bosentan as an add-on agent to intravenous epoprostenol (Flolan, GlaxoSmithKline Plc) in those with the most severe disease are ongoing. Bosentan may also have antifibrotic properties and its use in pulmonary fibrosis is being explored. Ease of administration of bosentan with twice-daily oral dosing will provide many patients with pulmonary hypertension an option for treatment without the risks and discomforts of continuous intravenous medication.
Collapse
Affiliation(s)
- Kelly Chin
- Division of Pulmonary and Critical Care Medicine, University of California, San Diego, 9300 Campus Point Drive, La Jolla, CA 92037-7381, USA.
| | | |
Collapse
|
5
|
Novel approaches to treat experimental pulmonary arterial hypertension: a review. J Biomed Biotechnol 2010; 2010:702836. [PMID: 20339474 PMCID: PMC2843902 DOI: 10.1155/2010/702836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 01/01/2023] Open
Abstract
Background. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by an increase in pulmonary artery pressure leading to right ventricular (RV) hypertrophy, RV failure, and ultimately death. Current treatments can improve symptoms and reduce severity of the hemodynamic disorder but gradual deterioration in their condition often necessitates a lung transplant. Methods and Results. In experimental models of PAH, particularly the model of monocrotaline-induced pulmonary hypertension, efficacious treatment options tested so far include a spectrum of pharmacologic agents with actions such as anti-mitogenic, proendothelial function, proangiogenic, antiinflammatory and antioxidative. Emerging trends in PAH treatment are gene and cell therapy and their combination, like (progenitor) cells enriched with eNOS or VEGF gene. More animal data should be collected to investigate optimal cell type, in vitro cell transduction, route of administration, and number of cells to inject. Several recently discovered and experimentally tested interventions bear potential for therapeutic purposes in humans or have been shown already to be effective in PAH patients leading to improved life expectation and better quality of life. Conclusion. Since many patients remain symptomatic despite therapy, we should encourage research in animal models of PAH and implement promising treatments in homogeneous groups of PAH patients.
Collapse
|
6
|
Theo Schermuly R, Ardeschir Ghofrani H, Weissmann N. Prostanoids and phosphodiesterase inhibitors in experimental pulmonary hypertension. Curr Top Dev Biol 2009; 67:251-84. [PMID: 15949537 DOI: 10.1016/s0070-2153(05)67008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis, characterized by intimal lesions, medial hypertrophy, and adventitial thickening of precapillary pulmonary arteries. Several approved therapies are currently available for the treatment of PAH, of which intravenous epoprostenol is the best explored over the past decade. Newly available oral endothelin receptor antagonists, although clinically efficacious, bear the risk of liver toxicity in a significant portion of patients. Substances that stimulate the formation of the second messengers cyclic adenosine monophosphate (cAMP) or guanosine monophosphate (cGMP) have proved useful in the treatment of various forms of pre-capillary pulmonary hypertension. These second messengers of the endogenous vasodilator mediators that include prostacyclin and nitric oxide (NO) are hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs), a class of enzymes from which 11 isoforms have been characterized. This chapter highlights developments in the treatment of experimental pulmonary hypertension with special attention to prostanoids and PDE inhibitors. We summarize findings for the acute vasodilatory as well as chronic effects of prostanoids, PDE inhibitors, or combinations of both, in animal models of pulmonary hypertension.
Collapse
Affiliation(s)
- Ralph Theo Schermuly
- Department of Internal Medicine II, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | | | | |
Collapse
|
7
|
Tan XY, He JG. The remodeling of connexin in the hypertrophied right ventricular in pulmonary arterial hypertension and the effect of a dual ET receptor antagonist (bosentan). Pathol Res Pract 2009; 205:473-82. [PMID: 19232841 DOI: 10.1016/j.prp.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/30/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
Studies on the role of connexins (Cxs) in the pathogenesis of right ventricular (RV) hypertrophy in pulmonary arterial hypertension (PAH) have not been reported to date. Therefore, we established a rat model of PAH induced by monocrotaline (MCT), and they were randomized to three groups: Control, MCT, and MCT+bosentan. Through electromicroscopy, in the control group, the gap junctions were long and frequent in intercalated disks, and short and rare at the sites of side-side cell junctions. In the MCT group, the opposite distribution was detected. In the MCT+bosentan group, the distribution of gap junctions was similar to that in the control group. Using immunoconfocal microscopy, most of the Cx43 staining was aggregated at the cell termini, and staining was weak at the sites of side-side cell junctions in the control group. However, the distribution of Cx43 was opposite in the MCT group. In the MCT+bosentan group, the result was similar to that in the control group. Therefore, perturbation of connexin distribution may be associated with RV hypertrophy. Improving the distribution of Cx43 in RV myocardium may be one of the mechanisms of a dual ET receptor antagonist partly reversing the RV hypertrophy.
Collapse
Affiliation(s)
- Xiao-Yan Tan
- Department of Internal Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, PR China.
| | | |
Collapse
|
8
|
Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel NF, Kubo K. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2009; 296:L648-56. [PMID: 19201816 DOI: 10.1152/ajplung.90270.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation, imbalance of proteolytic and anti-proteolytic activities, oxidative stress, and apoptosis of lung structural cells contribute to the pathogenesis of COPD. Prostacyclin protects cells against apoptosis, has anti-inflammatory properties, partially prevents cigarette smoke extract (CSE)-induced apoptosis of the pulmonary endothelium, and thus may be relevant in the pathogenesis of emphysema. We determined whether a synthetic stable prostacyclin analog, beraprost sodium (BPS), attenuates the development of CSE-induced emphysema and elucidated the molecular mechanisms involved in its effect. Sprague-Dawley rats were treated with BPS and injected with CSE once a week for 3 wk. We measured the DNA damage of cells, the expression of caspase-3, and the activity of matrix metalloproteinase (MMP)-2 and MMP-9. We also analyzed TNFalpha and IL-1beta concentrations and the serum antioxidant activity. BPS prevented the development of CSE-induced emphysema, resulting in significant attenuation in alveolar enlargement and pulmonary parenchymal destruction. BPS inhibited pulmonary apoptosis and induction of MMP-2 and MMP-9 activity. Moreover, the protective effect of BPS was associated with a reduction of the expression of proinflammatory cytokines including TNFalpha and IL-1beta and a normalized biological oxidant activity. BPS introduces all these events, probably by activating cAMP signaling through acting specific prostacyclin receptors. In conclusion, BPS protects against the development of CSE-induced emphysema by attenuating apoptosis, inhibiting proteolytic enzyme activity, reducing inflammatory cytokine levels, and augmenting antioxidant activity. BPS may potentially represent a new therapeutic option in the prevention of emphysema in humans in prospect.
Collapse
Affiliation(s)
- Yan Chen
- First Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Román Broto A, Monforte Torres V. [Combination therapy for pulmonary arterial hypertension]. Arch Bronconeumol 2009; 45:36-40. [PMID: 19186297 DOI: 10.1016/j.arbres.2008.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
10
|
Kuwano K, Hashino A, Noda K, Kosugi K, Kuwabara K. A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), on rat pulmonary artery. J Pharmacol Exp Ther 2008; 326:691-9. [PMID: 18552131 DOI: 10.1124/jpet.108.138305] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
2-{4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304) is an orally available, long-acting nonprostanoid prostacyclin receptor (IP receptor) agonist prodrug. In a rat model of pulmonary hypertension induced by monocrotaline (MCT), NS-304 ameliorated vascular endothelial dysfunction, pulmonary arterial wall hypertrophy, and right ventricular hypertrophy, and it elevated right ventricular systolic pressure and improved survival. {4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), the active form of NS-304, is much more selective for the IP receptor than are the prostacyclin analogs beraprost and iloprost, which also have high affinity for the EP(3) receptor. To investigate the effect of receptor selectivity on vasodilation of the pulmonary artery, we assessed the relaxant response to these IP agonists in rats. MRE-269 induced vasodilation equally in large pulmonary arteries (LPA) and small pulmonary arteries (SPA), whereas beraprost and iloprost induced less vasodilation in SPA than in LPA. An EP(3) agonist, sulprostone, induced SPA and LPA vasoconstriction, and an EP(3) antagonist attenuated the vasoconstriction. Beraprost showed EP(3) agonism and induced LPA and SPA vasoconstriction, whereas the EP(3) antagonist inhibited this vasoconstriction and enhanced beraprost- and iloprost-induced SPA vasodilation. These findings suggest that the EP(3) agonism of beraprost and iloprost interfered with the SPA vasodilation resulting from their IP receptor agonism. Endothelium removal markedly attenuated the vasodilation induced by beraprost, but not that induced by MRE-269 or iloprost. Moreover, the vasodilation induced by beraprost and iloprost, but not that induced by MRE-269, was more strongly attenuated in LPA from MCT-treated rats than from normal rats. NS-304 is a promising alternative medication for pulmonary arterial hypertension with prospects for good patient compliance.
Collapse
Affiliation(s)
- Keiichi Kuwano
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., 14 Nishinosho-Monguchi-Cho, Kisshoin, Minami-Ku, Kyoto 601-8550, Japan.
| | | | | | | | | |
Collapse
|
11
|
Stessel H, Brunner F. Effect of Endothelin Antagonism on Contractility, Intracellular Calcium Regulation and Calcium Regulatory Protein Expression in Right Ventricular Hypertrophy of the Rat. Basic Clin Pharmacol Toxicol 2008. [DOI: 10.1111/j.1742-7843.2004.pto_940107.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Tawara S, Fukumoto Y, Shimokawa H. Effects of Combined Therapy With a Rho-Kinase Inhibitor and Prostacyclin on Monocrotaline-Induced Pulmonary Hypertension in Rats. J Cardiovasc Pharmacol 2007; 50:195-200. [PMID: 17703136 DOI: 10.1097/fjc.0b013e31806befe6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pulmonary hypertension (PH) is a fatal disease characterized by endothelial dysfunction, hypercontraction and proliferation of vascular smooth muscle cells, and migration of inflammatory cells, for which no satisfactory treatment has yet been developed. We have previously demonstrated that long-term inhibition of Rho-kinase, an effector of the small GTPase Rho, ameliorates monocrotaline-induced PH in rats and hypoxia-induced PH in mice. We also have reported that prostacyclin and its oral analogue, beraprost sodium (BPS), may lack direct inhibitory effect on Rho-kinase in vitro, suggesting that combination therapy with a Rho-kinase inhibitor and BPS is effective for the treatment of PH. In this study, we addressed this point in monocrotaline-induced PH model in rats. Male Sprague-Dawley rats were given a subcutaneous injection of monocrotaline (60 mg/kg). They were maintained with or without the treatment with a Rho-kinase inhibitor, fasudil (30 mg/kg/day), BPS (200 microg/kg/day), or a combination of both drugs for 3 weeks. The combination therapy, when compared with each monotherapy, showed significantly more improvement in PH, right ventricular hypertrophy, and pulmonary medial thickness without any adverse effects. Plasma concentrations of fasudil were not affected by BPS. These results suggest that combination therapy with a Rho-kinase inhibitor and prostacyclin exerts further beneficial effects on PH.
Collapse
Affiliation(s)
- Shunsuke Tawara
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
13
|
Campian ME, Hardziyenka M, Michel MC, Tan HL. How valid are animal models to evaluate treatments for pulmonary hypertension? Naunyn Schmiedebergs Arch Pharmacol 2006; 373:391-400. [PMID: 16932922 DOI: 10.1007/s00210-006-0087-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Various animal models of pulmonary hypertension (PH) exist, among which injection of monocrotaline (MCT) and exposure to hypoxia are used most frequently. These animal models have not only been used to characterize the pathophysiology of PH and its sequelae such as right ventricular hypertrophy and failure, but also to test novel therapeutic strategies. This manuscript summarizes the available treatment studies in animal models of PH, and compares the findings to those obtained in patients with PH. The analysis shows that all approaches which have proven successful in patients, most notably prostacyclin and its analogs and endothelin receptor antagonists, are also effective in various animal models. However, the opposite it not always true. Therefore, promising results in animals have to be interpreted carefully until confirmed in clinical studies.
Collapse
Affiliation(s)
- Maria E Campian
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Dandel M, Lehmkuhl HB, Hetzer R. Advances in the Medical Treatment of Pulmonary Hypertension. Kidney Blood Press Res 2006; 28:311-24. [PMID: 16534227 DOI: 10.1159/000090186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increased pulmonary precapillary vascular resistance due to vasoconstriction and vasoproliferative processes is the basic pathophysiological mechanism in the development of pulmonary hypertension (PH). With the exception of pulmonary venous hypertension, where the primary cause of PH is left ventricular failure or mitral valvular disease, all the other PH categories will benefit to a greater or lesser extent from pulmonary vasodilator and antivasoproliferative therapy. Today, for this purpose, in addition to intravenous prostacyclin (epoprostenol), which is restricted to severe pulmonary arterial hypertension (NYHA class IV and late class III), other therapeutic options such as treatment with more stable prostacyclin analogs (oral beraprost, aerosolized iloprost), endothelin-receptor antagonists (bosentan) or phosphodiesterase inhibitors (sildenafil) are also available and these are especially useful for the treatment of the early stages of the disease. The recent progress in medical therapy has markedly increased the life expectancy in patients with pulmonary arterial hypertension and substantially improved their quality of life. Chronic hemodialysis (HD) patients show higher endothelin-1 (ET-1) activity in comparison to healthy individuals and there is evidence that the increase of pulmonary vascular resistance in these patients is at least in part mediated by ET-1. Recent data show good results after PH therapy with the endothelin-receptor antagonist bosentan in HD patients. Also prostacyclin and its analogs, as well as phosphodiesterase inhibitors, can be useful for the treatment of pulmonary hypertension in patients with chronic renal failure.
Collapse
Affiliation(s)
- Michael Dandel
- Deutsches Herzzentrum Berlin, Department of Cardiothoracic and Vascular Surgery, Berlin, Germany.
| | | | | |
Collapse
|
15
|
Nakamoto T, Harasawa H, Akimoto K, Hirata H, Kaneko H, Kaneko N, Sorimachi K. Effects of olmesartan medoxomil as an angiotensin II-receptor blocker in chronic hypoxic rats. Eur J Pharmacol 2005; 528:43-51. [PMID: 16336959 DOI: 10.1016/j.ejphar.2005.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/18/2005] [Accepted: 10/25/2005] [Indexed: 11/17/2022]
Abstract
We established a rat chronic alveolar hypoxia in vivo model to evaluate the efficacy against hypoxic pulmonary hypertension of a new angiotensin II-receptor I blocker, olmesartan medoxomil. Three groups of rats were established: rats exposed for 2-6 weeks to 10% oxygen atmosphere in a normobaric chamber; hypoxic rats treated with olmesartan medoxomil oral administration (5 mg/day) every day; and control rats fed in a normoxic condition. After hypoxia treatment, the presence, etiology and severity of pulmonary hypertension, was echocardiographically evaluated, and expressions of brain natriuretic peptide (BNP), transforming growth factor (TGF-beta) and endothelin-1 genes measured by both immunohistochemical assay and real-time polymerase chain reaction. Olmesartan medoxomil significantly reduced the induction of hypoxic cor pulmonale not only on echocardiographical observations but also in BNP, TGF-beta and endothelin gene expressions in molecular studies. However, systolic blood pressure was independent of olmesartan medoxomil. The present study clearly indicates that the angiotensin II-type I-receptor blocker olmesartan medoxomil has significant efficacy for hypoxic cor pulmonale.
Collapse
MESH Headings
- Administration, Oral
- Angiotensin II Type 1 Receptor Blockers/administration & dosage
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Echocardiography/drug effects
- Endothelins/genetics
- Endothelins/metabolism
- Heart/drug effects
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/metabolism
- Imidazoles/administration & dosage
- Imidazoles/pharmacology
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Natriuretic Peptide, Brain/blood
- Natriuretic Peptide, Brain/genetics
- Olmesartan Medoxomil
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Heart Disease/metabolism
- Pulmonary Heart Disease/prevention & control
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Tetrazoles/administration & dosage
- Tetrazoles/pharmacology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Takaaki Nakamoto
- Department of Cardiology and Pneumology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Saji K, Sakuma M, Suzuki J, Takahashi T, Demachi J, Nawata J, Kitamukai O, Onoue N, Sugimura K, Tada T, Fukui S, Kagaya Y, Watanabe J, Shirato K. Efficacy of acute inhalation of nitric oxide in patients with primary pulmonary hypertension using chronic use of continuous epoprostenol infusion. Circ J 2005; 69:335-8. [PMID: 15731541 DOI: 10.1253/circj.69.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND There have only been a few reports published on combination therapy for patients with primary pulmonary hypertension (PPH). METHODS AND RESULTS Fifteen patients with PPH (4 men and 11 women, 34.5+/-12.1 years old) had received chronic administration of epoprostenol and the additive effects of inhaled nitric oxide (NO) and the hemodynamic changes were evaluated. In addition, the difference in the effect of acute NO loading before and after the epoprostenol therapy was compared in 6 of these patients. Under chronic use of epoprostenol, mean pulmonary arterial pressure, mean right atrial pressure and pulmonary vascular resistance were decreased with acute inhalation of NO. However, cardiac output, mean aortic pressure and systemic vascular resistance were unchanged. As a result, the pulmonary to systemic vascular resistance ratio was reduced. Moreover, after chronic use of epoprostenol, the change (delta) in cardiac output with NO inhalation was increased and the NO-induced decrease in pulmonary vascular resistance was augmented compared to those before the induction. CONCLUSION Nitric oxide inhalation further improved the hemodynamics when combined with chronic use of epoprostenol in PPH patients. These results suggest the possibility that combination therapies can be used in the treatment for PPH patients.
Collapse
Affiliation(s)
- Kenya Saji
- Department of Cardiovascular Medicine, Tohoku University Graduated School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abe K, Morikawa K, Hizume T, Uwatoku T, Oi K, Seto M, Ikegaki I, Asano T, Kaibuchi K, Shimokawa H. Prostacyclin Does Not Inhibit Rho-Kinase. J Cardiovasc Pharmacol 2005; 45:120-4. [PMID: 15654260 DOI: 10.1097/01.fjc.0000151898.65260.6a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary pulmonary hypertension continues to be a fatal disease. We have recently demonstrated that long-term inhibition of Rho-kinase, an effector of the small GTPase Rho, is effective for the treatment of pulmonary hypertension (PH) in rats and humans. Prostacyclin has been clinically used for the treatment of PH with moderate success. However, it remains to be examined whether Rho-kinase inhibition is involved in its beneficial effects on PH. In an ELISA assay, neither prostacyclin nor its oral analogue, beraprost sodium, inhibited Rho-kinase even at higher concentrations (10(-7) to 10(-5) M, 100 to 10,000 times higher than their clinical concentrations), whereas specific Rho-kinase inhibitors, fasudil and hydroxyfasudil, markedly (approximately 95%) inhibited the Rho-kinase activity at 10(-5) M (near their clinical concentrations). Beraprost sodium did not significantly suppress serotonin-induced vascular smooth muscle cell (VSMC) contractions or Rho-kinase activity of the rat aorta without endothelium, as evaluated by the extent of phosphorylation of the ERM family, a substrate of Rho-kinase, whereas hydroxyfasudil markedly suppressed the VSMC contractions and Rho-kinase activity. These results indicate that prostacyclin lacks direct inhibitory effect on Rho-kinase and suggest that combination therapy with prostacyclin and a Rho-kinase inhibitor could exert further beneficial effects on PH.
Collapse
Affiliation(s)
- Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stessel H, Brunner F. Effect of Endothelin Antagonism on Contractility, Intracellular Calcium Regulation and Calcium Regulatory Protein Expression in Right Ventricular Hypertrophy of the Rat. ACTA ACUST UNITED AC 2004. [DOI: 10.1111/j.1742-7843.2004.pto940107.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|