1
|
Ahmed OM, Ahmed RG, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 2012; 30:517-537. [PMID: 22664656 DOI: 10.1016/j.ijdevneu.2012.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants and one oxidative stress marker (lipid peroxidation, LPO) followed a synchronized course of alterations in cerebrum, cerebellum and medulla oblongata. In both thyroid states, the oxidative damage has been demonstrated by the increased LPO and inhibition of enzymatic and non-enzymatic antioxidants in most examined ages and brain regions. These disturbances in the antioxidant defense system led to deterioration in the neuronal maturation and development. In conclusion, it can be suggested that the maldevelopment of neurons and dendrites in different brain regions of offspring of hypothyroid and hyperthyroid mother rat dams may be attributed, at least in part, to the excess oxidative stress and deteriorated antioxidant defense system in such conditions.
Collapse
Affiliation(s)
- O M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | | | | | | | | |
Collapse
|
2
|
Casalino E, Calzaretti G, Landriscina M, Sblano C, Fabiano A, Landriscina C. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase. Toxicology 2007; 237:24-34. [PMID: 17573173 DOI: 10.1016/j.tox.2007.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/19/2007] [Accepted: 04/27/2007] [Indexed: 11/16/2022]
Abstract
In rat liver, in addition to their intrinsic transferase activity, alpha-class GSTs have Se-independent glutathione peroxidase activity toward fatty acid hydroperoxides, cumene hydroperoxide and phospholipids hydroperoxides but not toward H(2)O(2.) We have previously shown that hepatic GST activity by these isoenzymes is significantly increased 24h after cadmium or manganese administration (Casalino et al., 2004). Here it is reported that Se-independent glutathione peroxidase activity by alpha-class GSTs is also stimulated in the liver of intoxicated rats. The stimulation is associated with a higher level of alpha-class GST proteins, whose induction is blocked by actinomycin D co-administration. The observed Se-independent glutathione peroxidase activity is due to alpha-class GST isoenzymes, as indicated by the studies with diethyldithiocarbamate which, at any concentration, equally inhibits both GST and Se-independent glutathione peroxidase and is an uncompetitive inhibitor of both enzymes. As for liver Se-GSPx, it is not at all affected under these toxic conditions. For comparison, we have evaluated the status of another important antioxidant enzyme, NAD(P)H:quinone reductase, 24h after cadmium or manganese administration. NQO1 too results strongly stimulated in the liver of the intoxicated rats. In these animals, a higher expression of Nrf2 protein is observed, actively translocated from the cytoplasm to the nucleus. The results with the transcription inhibitor, actinomycin D, and the effects on Nrf2 protein are the first clear indication that acute manganese intoxication, similarly to that of cadmium and other heavy metals, increases both the hepatic level of Nrf2 and its transfer from the cytoplasm to the nucleus where it actively regulates the induction of phase II enzymes.
Collapse
Affiliation(s)
- Elisabetta Casalino
- Unit of Veterinary Biochemistry, Department of Pharmaco-Biology, University of Bari, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | - Giovanna Calzaretti
- Unit of Veterinary Biochemistry, Department of Pharmaco-Biology, University of Bari, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Matteo Landriscina
- Clinical Oncology Unit, Department of Medical Sciences, University of Foggia, Italy
| | - Cesare Sblano
- Unit of Veterinary Biochemistry, Department of Pharmaco-Biology, University of Bari, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Annarita Fabiano
- Clinical Oncology Unit, Department of Medical Sciences, University of Foggia, Italy
| | - Clemente Landriscina
- Unit of Veterinary Biochemistry, Department of Pharmaco-Biology, University of Bari, Str. Prov. per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
3
|
Price TO, Uras F, Banks WA, Ercal N. A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp Neurol 2006; 201:193-202. [PMID: 16750528 DOI: 10.1016/j.expneurol.2006.03.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
Free radical production and, consequently, oxidative stress play an important role in the pathogenesis of AIDS and cause damage to lipids, proteins, and DNA. In our previous study, the HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 have been found to induce oxidative stress in an immortalized endothelial cell line from rat brain capillaries, RBE4 (in vitro model of the blood-brain barrier). Here, we have determined the effects of a novel antioxidant, N-acetylcysteine amide (NACA), on gp120- and Tat-induced oxidative stress. Various oxidative stress parameters, including reduced glutathione (GSH), oxidized glutathione (GSSG), catalase (CAT) activity, and glutathione reductase (GR) activity, as well as malondialdehyde (MDA) levels, were used as measures of oxidative stress. NACA significantly increased the levels of intracellular GSH, CAT, and GR and decreased the levels of MDA in RBE4 cells, showing that oxidatively challenged cells were protected. Gp120- and Tat-induced increases in intracellular reactive oxygen species (ROS) were observed by using the 2',7'-DCF assay; the ROS scavenger, NACA, blocked ROS generation. A well-known apoptosis indicator, caspase-3 activity, was measured and was also found to have been returned to its control levels by NACA. Treatment of RBE4 cells with gp120 and Tat caused an increase in toxicity, as measured by lactate dehydrogenase (LDH) and tetrazolium reduction (MTS) assays. HIV-1 protein-induced toxicity in these cells was blocked by treatment with NACA. These studies show that NACA reverses gp120- and Tat-induced oxidative stress in immortalized endothelial cells.
Collapse
Affiliation(s)
- Tulin Otamis Price
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Istanbul 81010, Turkey
| | | | | | | |
Collapse
|
4
|
Price TO, Ercal N, Nakaoke R, Banks WA. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 2005; 1045:57-63. [PMID: 15910762 DOI: 10.1016/j.brainres.2005.03.031] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) has an important role in the development of AIDS dementia. The HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 are neurotoxic and cytotoxic and have been implicated in the development of HIV dementia. They are known to cause oxidative stress and are associated with disruption of the BBB. Here, we used an immortalized endothelial cell line from rat brain capillaries, RBE4, to determine whether gp120 and Tat can induce oxidative stress in an in vitro model of the BBB. RBE4 cells were exposed to gp120 or Tat and the levels of reduced glutathione (GSH), oxidized glutathione (GSSG), catalase (CAT) activity, glutathione peroxidase (GPx) activity, and glutathione reductase (GR) activity, and malondialdehyde (MDA) used as measures of oxidative stress. Both gp120 and Tat significantly decreased the levels of intracellular GSH, GPx, and GR and increased the levels of MDA in RBE4 cells, showing that the cells were oxidatively challenged. The ratio of GSH/GSSG, a widely accepted indicator of oxidative stress, was also significantly decreased. These studies show that both of these viral proteins can induce oxidative stress in immortalized BBB endothelial cells.
Collapse
Affiliation(s)
- Tulin Otamis Price
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Istanbul 81010, Turkey
| | | | | | | |
Collapse
|
5
|
Collado MP, Latorre E, Fernández I, Aragonés MD, Catalán RE. Endothelin-1 decreases ethanolamine plasmalogen levels and evokes PAF production in brain microvessels. Microvasc Res 2003; 66:197-203. [PMID: 14609525 DOI: 10.1016/j.mvr.2003.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of brain microvessels with Endothelin-1 evoked a decrease in ethanolamine plasmalogen levels by calcium-independent phospholipase A(2). In contrast, the diacyl molecular forms of ethanolamine phospholipids were unaffected. Evidence also shows that Endothelin type A receptors are involved. Concomitantly, PAF production mediated by CoA-independent transacylase was observed. This is the first evidence of involvement of these pathways on the Endothelin-1 mechanism of action on the blood-brain barrier.
Collapse
Affiliation(s)
- M Pilar Collado
- Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Lyles J, Cadet JL. Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:155-68. [PMID: 12738056 DOI: 10.1016/s0165-0173(03)00173-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methylenedioxymethamphetamine (MDMA, Ecstasy) is a very popular drug of abuse. This has led to new intense concerns relevant to its nefarious neuropsychiatric effects. These adverse events might be related to the neurotoxic effects of the drug. Although the mechanisms of MDMA-induced neurotoxicity remain to be fully characterized, exposure to the drug can cause acute and long-term neurotoxic effects in animals and nonhuman primates. Recent studies have also documented possible toxic effects in the developing fetus. Nevertheless, there is still much debate concerning the effects of the drug in humans and how to best extrapolate animal and nonhuman primate data to the human condition. Herein, we review the evidence documenting the adverse effects of the drug in some animal models. We also discuss possible mechanisms for the development of MDMA neurotoxicity. Data supporting deleterious effects of this drug on the developing fetus are also described. Much remains to be done in order to clarify the molecular and biochemical pathways involved in the long-term neuroplastic changes associated with MDMA abuse.
Collapse
Affiliation(s)
- Johnalyn Lyles
- Molecular Neuropsychiatry Branch, National Institutes of Health/National Institute on Drug Abuse Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
7
|
Heaton MB, Paiva M, Mayer J, Miller R. Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett 2002; 334:83-6. [PMID: 12435477 DOI: 10.1016/s0304-3940(02)01123-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neonatal cerebellum undergoes an early period of ethanol sensitivity in which profound neuronal loss is seen following acute exposure, while slightly later exposure produces no such loss. This study was designed to determine whether this differential susceptibility is related to differences in ethanol-induced generation of reactive oxygen species (ROS). We found that ethanol treatment on postnatal day 4 (P4), the peak period of cerebellar vulnerability, resulted in ROS increases, but slightly later exposure (on P7) produced no immediate changes in ROS, but reductions were seen at 12 and 24 h following exposure. Exposure on P14 produced consistent decreases in ROS production. Thus, differential responsiveness in oxidative processes may play a major role in the differential temporal ethanol vulnerability of developing cerebellum.
Collapse
Affiliation(s)
- Marieta Barrow Heaton
- Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
The ageing process is characterized by a progressive loss of function and a decline in the functional capacities of the organism, leading to death. The nature of the processes involved in loss of functions is not well understood. A number of theories have been proposed, including a hypothesis that emphasizes the role of reactive oxygen species as a fundamental causal factor in the ageing process; among other things, oxidative damage to proteins through reactive oxygen species plays a key role in the ageing process. Oxidative modification of proteins generally causes them to become dysfunctional, and normally to undergo preferential degradation. Within the cell the main proteolytic machinery involved in the degradation of oxidized proteins is the proteasomal system, consisting of a multicatalytic protease complex--the proteasome--and numerous regulatory factors. The proteasome is a highly conserved structure that is distributed in the cytosol, nucleus and endoplasmatic reticulum of mammalian cells. As the proteasome itself is also exposed to oxidative stress during the ageing process several studies were carried out to investigate the role and the activity of the proteasomal system during ageing. This review will describe current knowledge of the activity of the protesomal system and its possible involvement in the ageing process.
Collapse
Affiliation(s)
- A Stolzing
- Neuroscience Research Center, Medical Faculty, Charité, Humboldt University Berlin, Germany
| | | |
Collapse
|