1
|
Zhou X, Luo J, Liang X, Li P, Ren K, Shi D, Xin J, Jiang J, Chen J, He L, Yang H, Ma S, Li B, Li J. Plasma thrombomodulin as a candidate biomarker for the diagnosis and prognosis of HBV-related acute-on-chronic liver failure. Infect Drug Resist 2024; 17:1185-1198. [PMID: 38560706 PMCID: PMC10981872 DOI: 10.2147/idr.s437926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Background and Aim Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a complicated syndrome with high short-term mortality. Effective biomarkers are required for its early diagnosis and prognosis. This study aimed to determine the diagnostic and prognostic value of thrombomodulin (TM) in patients with HBV-ACLF. Methods The expression of TM during disease progression was evaluated through transcriptomics analysis. The plasma TM concentrations of 393 subjects with HBV-ACLF (n=213), acute-on-chronic hepatic dysfunction (ACHD, n=50), liver cirrhosis (LC, n=50) or chronic hepatitis B (CHB, n=50), and normal controls (NC, n=30) from a prospective multicenter cohort, were measured to verify the diagnostic and prognostic significance of plasma TM for HBV-ACLF patients by enzyme-linked immunosorbent assay (ELISA). Results TM mRNA was highly expressed in the HBV-ACLF group compared with the ACHD group (AUROC=0.710). High expression of TM predicted poor prognosis for HBV-ACLF patients at 28/90 days (AUROCs=0.823/0.788). Functional analysis showed that TM was significantly associated with complement activation and the inflammatory signaling pathway. External validation confirmed its high diagnostic accuracy for HBV-ACLF patients (AUROC=0.796). Plasma TM concentrations were correlated with organ failure, including coagulation and kidney failure. Plasma TM concentrations showed a potential prognostic value for 28-day mortality rates (AUROC=0.702). Risk stratification specifically identified HBV-ACLF patients with a high risk of death as having a plasma TM concentration of ≥8.4 ng/mL. Conclusion This study reveals that the plasma TM can be a candidate biomarker for early diagnosis and prognosis of HBV-ACLF, and might play a vital role in coagulation and inflammation.
Collapse
Affiliation(s)
- Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Xi Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Shiwen Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Bingqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People’s Republic of China
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, People’s Republic of China
| |
Collapse
|
2
|
High plasma soluble thrombomodulin levels indicated poor prognosis of decompensated liver cirrhosis: a prospective cohort study. Eur J Gastroenterol Hepatol 2022; 34:1140-1146. [PMID: 35946457 PMCID: PMC9528942 DOI: 10.1097/meg.0000000000002428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Hepatic sinusoidal endothelial injury is a prominent characteristic of liver cirrhosis. We determined plasma soluble thrombomodulin (sTM) levels in cirrhosis patients to evaluate the relationship between vascular injury and long-term prognosis. METHODS A prospective single-center study was performed. The participants were followed up for every 6 months or until death or transplantation. A chemiluminescent enzyme immunoassay was used to establish a baseline sTM. RESULTS Among the 219 patients with decompensated liver cirrhosis, 53.42% were caused by hepatitis B and hepatitis C. Plasma sTM levels were much higher in cirrhosis than in healthy controls and increased parallel with Child-Pugh classification ( P < 0.01) and the amount of ascites ( P = 0.04). After adjusting for sex, age, international normalized ratio, bilirubin, and other potential factors, multivariate Cox regression revealed that per TU/ml elevation of plasma sTM causes an increase of 8% in mortality, and per-SD elevation of thrombomodulin causes a 53% increase in mortality. As the mortality rates in low (5.90-12.60 TU/ml) and medium (12.70-18.00 TU/ml) sTM levels were similar, so we chose the cutoff of 18.00 TU/ml to divide into two groups, and K-M analysis indicated that patients with sTM >18.0 TU/ml demonstrated an additional 2.01 times death risk (95% CI, 1.13-7.93; P = 0.01) than those with sTM ≤18.0 TU/ml. CONCLUSION Plasma sTM in cirrhosis was significantly increased in parallel with the severity of liver dysfunction. sTM elevation than 18 TU/ml indicated a poor prognosis of decompensated liver cirrhosis.
Collapse
|