1
|
Johnson MK, Kottur J, Nair DT. A polar filter in DNA polymerases prevents ribonucleotide incorporation. Nucleic Acids Res 2020; 47:10693-10705. [PMID: 31544946 PMCID: PMC6846668 DOI: 10.1093/nar/gkz792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of ribonucleotides in DNA can lead to genomic instability and cellular lethality. To prevent adventitious rNTP incorporation, the majority of the DNA polymerases (dPols) possess a steric filter. The dPol named MsDpo4 (Mycobacterium smegmatis) naturally lacks this steric filter and hence is capable of rNTP addition. The introduction of the steric filter in MsDpo4 did not result in complete abrogation of the ability of this enzyme to incorporate ribonucleotides. In comparison, DNA polymerase IV (PolIV) from Escherichia coli exhibited stringent selection for deoxyribonucleotides. A comparison of MsDpo4 and PolIV led to the discovery of an additional polar filter responsible for sugar selectivity. Thr43 represents the filter in PolIV and this residue forms interactions with the incoming nucleotide to draw it closer to the enzyme surface. As a result, the 2’-OH in rNTPs will clash with the enzyme surface, and therefore ribonucleotides cannot be accommodated in the active site in a conformation compatible with productive catalysis. The substitution of the equivalent residue in MsDpo4–Cys47, with Thr led to a drastic reduction in the ability of the mycobacterial enzyme to incorporate rNTPs. Overall, our studies evince that the polar filter serves to prevent ribonucleotide incorporation by dPols.
Collapse
Affiliation(s)
- Mary K Johnson
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
2
|
Genna V, Carloni P, De Vivo M. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. J Am Chem Soc 2018; 140:3312-3321. [PMID: 29424536 DOI: 10.1021/jacs.7b12446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymerases (Pols) synthesize the double-stranded nucleic acids in the Watson-Crick (W-C) conformation, which is critical for DNA and RNA functioning. Yet, the molecular basis to catalyze the W-C base pairing during Pol-mediated nucleic acids biosynthesis remains unclear. Here, through bioinformatics analyses on a large data set of Pol/DNA structures, we first describe the conserved presence of one positively charged residue (Lys or Arg), which is similarly located near the enzymatic two-metal active site, always interacting directly with the incoming substrate (d)NTP. Incidentally, we noted that some Pol/DNA structures showing the alternative Hoogsteen base pairing were often solved with this specific residue either mutated, displaced, or missing. We then used quantum and classical simulations coupled to free-energy calculations to illustrate how, in human DNA Pol-η, the conserved Arg61 favors W-C base pairing through defined interactions with the incoming nucleotide. Taken together, these structural observations and computational results suggest a structural framework in which this specific residue is critical for stabilizing the incoming (d)NTP nucleotide and base pairing during Pol-mediated nucleic acid biosynthesis. These results may benefit enzyme engineering for nucleic acid processing and encourage new drug discovery strategies to modulate Pols function.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
3
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
4
|
Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD. Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem 2013; 288:32753-32765. [PMID: 24085299 DOI: 10.1074/jbc.m113.484428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose.
Collapse
Affiliation(s)
| | | | - Cheri A Lee
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ibrahim M Moustafa
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric D Smidansky
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | - Jamie J Arnold
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
5
|
Blatter N, Bergen K, Nolte O, Welte W, Diederichs K, Mayer J, Wieland M, Marx A. Structure and function of an RNA-reading thermostable DNA polymerase. Angew Chem Int Ed Engl 2013; 52:11935-9. [PMID: 24106012 DOI: 10.1002/anie.201306655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/16/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Nina Blatter
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Blatter N, Bergen K, Nolte O, Welte W, Diederichs K, Mayer J, Wieland M, Marx A. Struktur und Funktion einer RNA-lesenden thermostabilen DNA-Polymerase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Walsh JM, Parasuram R, Rajput PR, Rozners E, Ondrechen MJ, Beuning PJ. Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:766-776. [PMID: 23034734 DOI: 10.1002/em.21730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/08/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
DinB is one of two Y family polymerases in E. coli and is involved in copying damaged DNA. DinB is specialized to bypass deoxyguanosine adducts that occur at the N(2) position, with its cognate lesion being the furfuryl adduct. Active site residues have been identified that make contact with the substrate and carry out deoxynucleotide triphosphate (dNTP) addition to the growing DNA strand. In DNA polymerases, these include negatively charged aspartate and glutamate residues (D8, D103, and E104 in E. coli DNA polymerase IV DinB). These residues position the essential magnesium ions correctly to facilitate nucleophilic attack by the primer hydroxyl group on the α-phosphate group of the incoming dNTP. To study the contribution of DinB residues to lesion bypass, the computational methods THEMATICS and POOL were employed. These methods correctly predict the known active site residues, as well as other residues known to be important for activity. In addition, these methods predict other residues involved in substrate binding as well as more remote residues. DinB variants with mutations at the predicted positions were constructed and assayed for bypass of the N(2) -furfuryl-dG lesion. We find a wide range of effects of predicted residues, including some mutations that abolish damage bypass. Moreover, most of the DinB variants constructed are unable to carry out the extension step of lesion bypass. The use of computational prediction methods represents another tool that will lead to a more complete understanding of translesion DNA synthesis.
Collapse
Affiliation(s)
- Jason M Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
9
|
Abstract
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular & Developmental Biology Program, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Vichier-Guerre S, Ferris S, Auberger N, Mahiddine K, Jestin JL. A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Angew Chem Int Ed Engl 2007; 45:6133-7. [PMID: 16838276 DOI: 10.1002/anie.200601217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie Organique URA 2128 CNRS, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | | | |
Collapse
|
11
|
Henry AA, Romesberg FE. The evolution of DNA polymerases with novel activities. Curr Opin Biotechnol 2007; 16:370-7. [PMID: 16006114 DOI: 10.1016/j.copbio.2005.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/01/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
DNA and RNA polymerases have evolved in nature to function in specific environments with specific substrates. Thus, although the commercial availability of these enzymes has revolutionized the biotechnology industry, their applications are limited. The availability of polymerases that have unnatural properties would be of even greater utility. Towards this goal, several activity-based screening and selection approaches have been developed. Using these techniques, polymerases that synthesize a variety of different polymers, including those containing 2'-O-methyl-modified nucleotides or unnatural base pairs, have been evolved. These results suggest that polymerases tailored for any specific application could soon be available.
Collapse
Affiliation(s)
- Allison A Henry
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | | |
Collapse
|
12
|
Vichier-Guerre S, Ferris S, Auberger N, Mahiddine K, Jestin JL. A Population of Thermostable Reverse Transcriptases Evolved fromThermus aquaticus DNA Polymerase I by Phage Display. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Loh E, Loeb LA. Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases. DNA Repair (Amst) 2005; 4:1390-8. [PMID: 16230053 DOI: 10.1016/j.dnarep.2005.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA polymerases of the Family A catalyze the addition of deoxynucleotides to a primer with high efficiency, processivity, and selectivity-properties that are critical to their function both in nature and in the laboratory. These polymerases tolerate many amino acid substitutions, even in regions that are evolutionarily conserved. This tolerance can be exploited to create DNA polymerases with novel properties and altered substrate specificities, using rational design and molecular evolution. These efforts have focused mainly on the Family A DNA polymerises -Taq, E. coli Pol I, and T7 - because they are widely utilized in biotechnology today. The redesign of polymerases often requires knowledge of the function of specific residues in the protein, including those located in six evolutionarily conserved regions. The most well characterized of these are motifs A and B, which regulate the fidelity of replication and the incorporation of nucleotide analogs such as dideoxynucleotides. Regions that remain to be more thoroughly characterized are motif C, which is critical for catalysis, and motifs 1, 2 and 6, all of which bind to DNA primer or template. Several recently identified mutants with abilities to incorporate nucleotides with bulky adducts have mutations that are not located within conserved regions and warrant further study. Analysis of these mutants will help advance our understanding of how DNA polymerases select bases with high fidelity.
Collapse
Affiliation(s)
- Ern Loh
- Joseph Gottstein Memorial Cancer Laboratory, Department of Pathology, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
14
|
Arezi B, Hansen CJ, Hogrefe HH. Efficient and high fidelity incorporation of dye-terminators by a novel archaeal DNA polymerase mutant. J Mol Biol 2002; 322:719-29. [PMID: 12270709 DOI: 10.1016/s0022-2836(02)00843-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the molecular basis of ddNTP selectivity in archaeal family B DNA polymerases by randomly mutagenizing the gene encoding Thermococcus sp. JDF-3 DNA polymerase and screening mutant libraries for improved ddNTP incorporation. We identified two mutations, P410L and A485T, that improved ddNTP uptake, suggesting the contribution of P410 and A485 to ddNTP/dNTP selectivity in archaeal DNA polymerases. The importance of A485 was identified previously in mutagenesis studies employing Pfu (A486) and Vent (A488) DNA polymerases, while the contribution of P410 to ddNTP/dNTP selectivity has not been reported. We demonstrate that a combination of mutations (P410L/A485T) has an additive effect in improving ddNTP incorporation by a total of 250-fold. To assess the usefulness of the JDF-3 P410L/A485T in fluorescent-sequencing applications, we compared the archaeal mutant to Taq F667Y with respect to fidelity and kinetic parameters for DNA and dye-ddNTPs. Although the Taq F667Y and JDF-3 P410L/A485T mutants exhibit similar K(m) and V(max) values for dye-ddNTPs in single-base extension assays, the archaeal mutant exhibits higher fidelity due to a reduced tendency to form certain (ddG:dT, ddT:dC) mispairs. DNA polymerases exhibiting higher insertion fidelity are expected to provide greater accuracy in SNP frequency determinations by single-base extension and in multiplex minisequencing assays.
Collapse
Affiliation(s)
- Bahram Arezi
- Stratagene Cloning Systems, La Jolla, CA 92037, USA
| | | | | |
Collapse
|