1
|
Wong HJ, Mohamad-Fauzi N, Rizman-Idid M, Convey P, Smykla J, Alias SA. UV-B-induced DNA damage and repair pathways in polar Pseudogymnoascus sp. from the Arctic and Antarctic regions and their effects on growth, pigmentation, and coniodiogenesis. Environ Microbiol 2022; 24:3164-3180. [PMID: 35621047 DOI: 10.1111/1462-2920.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m-2 d-1 significantly reduced fungal growth rates (by between 22 and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and nucleotide excision repair (NER), showed that the UV-B induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr, respectively) demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hao Jie Wong
- Laboratory of Gene Regulation Research, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Nuradilla Mohamad-Fauzi
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| | - Mohammed Rizman-Idid
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, United Kingdom.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Jerzy Smykla
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, Poland
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, Institute for Advanced Studies, Universiti Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Khan P, Chaudhuri RN. Acetylation of H3K56 orchestrates UV-responsive chromatin events that generate DNA accessibility during Nucleotide Excision Repair. DNA Repair (Amst) 2022; 113:103317. [PMID: 35290816 DOI: 10.1016/j.dnarep.2022.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
Abstract
Histone modifications have long been related to DNA damage response. Nucleotide excision repair pathway that removes helix-distorting lesions necessitates DNA accessibility through chromatin modifications. Previous studies have linked H3 tail residue acetylation to UV-induced NER. Here we present evidences that acetylation of H3K56 is crucial for early phases of NER. Using H3K56 mutants K56Q and K56R, which mimic acetylated and unacetylated lysines respectively, we show that recruitment of the repair factor Rad16, a Swi/Snf family member is dependent on H3K56 acetylation. With constitutive H3K56 acetylation, Rad16 recruitment became UV-independent. Furthermore, H3K56 acetylation promoted UV-induced hyperacetylation of H3K9 and H3K14. Importantly, constitutive H3K56 acetylation prominently increased chromatin accessibility. During NER, lack of H3K56 acetylation that effectively aborted H3 tail residue acetylation and Rad16 recruitment, thus failed to impart essential chromatin modulations. The NER-responsive oscillation of chromatin structure observed in wild type, was distinctly eliminated in absence of H3K56 acetylation. In vitro assay with wild type and H3K56 mutant cell extracts further indicated that absence of H3K56 acetylation negatively affected DNA relaxation during NER. Overall, H3K56 acetylation regulates Rad16 redistribution and UV-induced H3 tail residue hyperacetylation, and the resultant modification code promotes chromatin accessibility and recruitment of subsequent repair factors during NER.
Collapse
Affiliation(s)
- Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
3
|
Waters R, van Eijk P, Reed S. Histone modification and chromatin remodeling during NER. DNA Repair (Amst) 2015; 36:105-113. [DOI: 10.1016/j.dnarep.2015.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. PLoS One 2013; 8:e81015. [PMID: 24278365 PMCID: PMC3835667 DOI: 10.1371/journal.pone.0081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3). Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.
Collapse
Affiliation(s)
- Ida Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Iben Bach Bentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anni H. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
5
|
Waters R, Evans K, Bennett M, Yu S, Reed S. Nucleotide excision repair in cellular chromatin: studies with yeast from nucleotide to gene to genome. Int J Mol Sci 2012; 13:11141-11164. [PMID: 23109843 PMCID: PMC3472735 DOI: 10.3390/ijms130911141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/16/2022] Open
Abstract
Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER) in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.
Collapse
Affiliation(s)
- Raymond Waters
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-29-2068-7336; Fax: +44-29-2074-4276
| | | | | | | | | |
Collapse
|
6
|
Svensson JP, Pesudo LQ, Fry RC, Adeleye YA, Carmichael P, Samson LD. Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC SYSTEMS BIOLOGY 2011; 5:157. [PMID: 21978764 PMCID: PMC3213080 DOI: 10.1186/1752-0509-5-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND A myriad of new chemicals has been introduced into our environment and exposure to these agents can damage cells and induce cytotoxicity through different mechanisms, including damaging DNA directly. Analysis of global transcriptional and phenotypic responses in the yeast S. cerevisiae provides means to identify pathways of damage recovery upon toxic exposure. RESULTS Here we present a phenotypic screen of S. cerevisiae in liquid culture in a microtiter format. Detailed growth measurements were analyzed to reveal effects on ~5,500 different haploid strains that have either non-essential genes deleted or essential genes modified to generate unstable transcripts. The pattern of yeast mutants that are growth-inhibited (compared to WT cells) reveals the mechanisms ordinarily used to recover after damage. In addition to identifying previously-described DNA repair and cell cycle checkpoint deficient strains, we also identified new functional groups that profoundly affect MMS sensitivity, including RNA processing and telomere maintenance. CONCLUSIONS We present here a data-driven method to reveal modes of toxicity of different agents that impair cellular growth. The results from this study complement previous genomic phenotyping studies as we have expanded the data to include essential genes and to provide detailed mutant growth analysis for each individual strain. This eukaryotic testing system could potentially be used to screen compounds for toxicity, to identify mechanisms of toxicity, and to reduce the need for animal testing.
Collapse
Affiliation(s)
- J Peter Svensson
- Biological Engineering Department, Center for Environmental Health Sciences, Biology Department, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
7
|
Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair (Amst) 2010; 9:824-34. [PMID: 20472512 DOI: 10.1016/j.dnarep.2010.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/25/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
Abstract
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Delta, rad17Delta and rad24Delta cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Delta that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Delta, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.
Collapse
|
8
|
Waters R, Teng Y, Yu Y, Yu S, Reed SH. Tilting at windmills? The nucleotide excision repair of chromosomal DNA. DNA Repair (Amst) 2008; 8:146-52. [PMID: 19041427 DOI: 10.1016/j.dnarep.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
9
|
Koltovaya NA, Nikulushkina YV, Roshina MP, Devin AB. Interaction between checkpoint genes RAD9, RAD17, RAD24, and RAD53 involved in the determination of yeast Saccharomyces cerevisiae sensitivity to ionizing radiation. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lettieri T, Kraehenbuehl R, Capiaghi C, Livingstone-Zatchej M, Thoma F. Functionally distinct nucleosome-free regions in yeast require Rad7 and Rad16 for nucleotide excision repair. DNA Repair (Amst) 2008; 7:734-43. [PMID: 18329964 DOI: 10.1016/j.dnarep.2008.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/16/2022]
Abstract
In yeast, Rad7 and Rad16 are two proteins required for nucleotide excision repair (NER) of non-transcribed chromatin. They have roles in damage recognition, in the postincision steps of NER, and in ultraviolet-light-dependent histone H3 acetylation. Moreover, Rad16 is an ATP-ase of the SNF2 superfamily and therefore might facilitate chromatin repair by nucleosome remodelling. Here, we used yeast rad7 Delta rad16 Delta mutants and show that Rad7-Rad16 is also required for NER of UV-lesions in three functionally distinct nucleosome-free regions (NFRs), the promoter and 3'-end of the URA3 gene and the ARS1 origin of replication. Moreover, rapid repair of UV-lesions by photolyase confirmed that nucleosomes were absent and that neither UV-damage formation nor rad7 Delta rad16 Delta mutations altered chromatin accessibility in NFRs. The data are consistent with a role of Rad7-Rad16 in damage recognition and processing in absence of nucleosomes. An additional role in nucleosome remodelling is discussed.
Collapse
Affiliation(s)
- Teresa Lettieri
- Institute of Cell Biology, ETH Zurich, Schafmattstrasse 18, CH-8093 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Wu X, Shell SM, Liu Y, Zou AY. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 2006; 26:757-64. [PMID: 16862173 PMCID: PMC3106104 DOI: 10.1038/sj.onc.1209828] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In response to DNA damage, mammalian cells activate various DNA repair pathways to remove DNA lesions and, meanwhile, halt cell cycle progressions to allow sufficient time for repair. The nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint activation are two major cellular responses to DNA damage induced by UV irradiation. However, how these two processes are coordinated in the response is poorly understood. Here we showed that the essential NER factor XPA (xeroderma pigmentosum group A) underwent nuclear accumulation upon UV irradiation, and strikingly, such an event occurred in an ATR (Ataxia-Telangiectasia mutated and RAD3-related)-dependent manner. Either treatment of cells with ATR kinase inhibitors or transfection of cells with small interfering RNA targeting ATR compromised the UV-induced XPA nuclear translocation. Consistently, the ATR-deficient cells displayed no substantial XPA nuclear translocation while the translocation remained intact in ATM (Ataxia-Telangiectasia mutated)-deficient cells in response to UV irradiation. Moreover, we found that ATR is required for the UV-induced nuclear focus formation of XPA. Taken together, our results suggested that the ATR checkpoint pathway may modulate NER activity through the regulation of XPA redistribution in human cells upon UV irradiation.
Collapse
Affiliation(s)
| | | | | | - and Yue Zou
- To whom correspondences should be addressed: Yue Zou East Tennessee State University James H. Quillen College of Medicine Department of Biochemistry and Molecular Biology Johnson City, TN 37614 Phone: (423) 439-2124 FAX: (423) 439-2030
| |
Collapse
|
12
|
Wu X, Shell SM, Yang Z, Zou Y. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997-3005. [PMID: 16540648 PMCID: PMC1450106 DOI: 10.1158/0008-5472.can-05-3403] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | |
Collapse
|
13
|
Caba E, Dickinson DA, Warnes GR, Aubrecht J. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutat Res 2005; 575:34-46. [PMID: 15878181 DOI: 10.1016/j.mrfmmm.2005.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/03/2005] [Accepted: 02/23/2005] [Indexed: 05/02/2023]
Abstract
Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. Genomic approaches, which monitor gene expressions across large numbers of genes, can serve as a powerful tool for exploring mechanisms of toxicity. Here, using five different agents, we investigated whether the analysis of genome-wide expression profiles in Saccharomyces cerevisiae could provide insights into mechanisms of genotoxicity versus cytotoxicity. To differentiate the genotoxic stress-associated expression signatures from that of a general cytotoxic stress, we compared gene expression profiles following the treatment with DNA-reactive (cisplatin, MMS, bleomycin) and DNA non-reactive (ethanol and sodium chloride) compounds. Although each of the tested chemicals produced a distinct gene expression profile, we were able to identify a gene expression signature consisting of a relatively small number of biologically relevant genes capable of differentiating genotoxic and cytotoxic stress. The gene set includes such upregulated genes as HUG1, ECM4 and previously uncharacterized gene, YLR297W in the genotoxic and GAP1, CGR1 in the cytotoxic group. Our results indicate the potential of gene expression profile analysis for elucidating mechanism of action of genotoxic agents.
Collapse
Affiliation(s)
- Ebru Caba
- Pfizer Global Research and Development, Eastern Point Road, MS 8274-1246, Groton, CT 06340-8014, USA
| | | | | | | |
Collapse
|
14
|
Bucheli M, Sweder K. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Mol Microbiol 2004; 52:1653-63. [PMID: 15186415 DOI: 10.1111/j.1365-2958.2004.04081.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair (NER) in eukaryotes is a pathway conserved from yeast to humans that removes many bulky chemical adducts and UV-induced photoproducts from DNA in a relatively error-free manner. In addition to the recognition and excision of DNA damage throughout the genome (GGR), there exists a mechanism, transcription-coupled nucleotide excision repair (TCR), for recognizing some types of DNA damage in the transcribed strand of genes in Escherichia coli, yeast and mammalian cells. An obstacle in the repair of the transcribed strand of active genes is the RNA polymerase complex stalled at sites of DNA damage. The stalled RNA polymerase complex may then mediate recruitment of repair proteins to damage in the transcribed strand. Proteins enabling TCR are the Cockayne syndrome B (CSB) protein in humans and its yeast homologue Rad26. Both CSB and Rad26 belong to the Swi2/Snf2 family of DNA-dependent ATPases, which change DNA accessibility to proteins by altering chromatin structure. To address how Rad26 functions in yeast repair, we used the genetic approach of overexpressing Rad26 and examined phenotypic changes, i.e. changes in NER. We found that repair of both the transcribed and the non-transcribed strands is increased. In addition, overexpression of Rad26 partially bypasses the requirement for Rad7 in GGR, specifically in the repair of non-transcribed sequences. As TCR takes place in very localized regions of DNA (i.e. within genes) in wild-type cells, we propose that overexpression of recombinant Rad26 increases accessibility of the damaged DNA in chromatin for interaction with repair proteins.
Collapse
Affiliation(s)
- Miriam Bucheli
- Program in Microbiology and Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ, USA
| | | |
Collapse
|
15
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|