1
|
Uehara N, Katakura Y, Miura T, Shirahata S. Subtractive screening of genes involved in cellular senescence. Cytotechnology 2011; 35:35-42. [PMID: 19003279 DOI: 10.1023/a:1008103230335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We attempted to identify the genes involved in cellularsenescence, telomere maintenance and telomerase regulationthrough subtractive screening of cDNA libraries prepared froma human lung adenocarcinoma cell line A549 and its sublinesnamed A5DC7, CK and AST-9. Cell phenotypes of A5DC7, CK andAST-9 are normal cell-like, cancer cell-like and intermediate,respectively. These cell lines have different phenotypes interms of telomerase activity and telomere maintenance, andthus are thought to be useful for identifying the genesinvolved in cellular senescence and telomerase regulation. In this study, we identified 86 independent cDNA clones bysubtractive screening. Among these cDNA clones, subtractingA5DC7 cDNAs from A549 cDNAs and CK cDNAs gave 7 and 3 cDNAclones which highly and specifically expressed in tester celllines. Genes corresponding to these 10 cDNA clones mightparticipate in maintaining cancer-cell phenotypes. As aresult of database searching, each four of A549 specific cDNAclones are found to correspond to known cDNAs. Each two ofA549 specific and two of CK specific cDNA clones have highhomology to independent ESTs. Sequences having homology toeach one of A549 specific and one of CK specific cDNA cloneshave not been deposited in the Genbank database, indicatingthat these two cDNA clones are part of novel genes. Weanticipate that their involvement in telomerase regulationand/or senescence program can be clarified by functionalanalysis using each full-length cDNA.
Collapse
Affiliation(s)
- N Uehara
- Graduate School of Genetic Resources Technology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
2
|
Gullo CA, Ge F, Cow G, Teoh G. Ku86 exists as both a full-length and a protease-sensitive natural variant in multiple myeloma cells. Cancer Cell Int 2008; 8:4. [PMID: 18442416 PMCID: PMC2386117 DOI: 10.1186/1475-2867-8-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background Truncated variants of Ku86 protein have previously been detected in 86% to 100% of freshly isolated patient multiple myeloma (MM) cells. Since, the Ku70/Ku86 heterodimer functions as the regulatory subunit of the DNA repair enzyme, DNA-dependent protein kinase, we have been interested in the altered expression and function of Ku86 variant (Ku86v) proteins in genome maintenance of MM. Results Although, a number of studies have suggested that truncated forms of Ku proteins could be artificially generated by proteolytic degradation in vitro in human lymphocytes, we now show using whole cell immunoblotting that the RPMI-8226 and SGH-MM5 human MM cell lines consistently express full-length Ku86 as well as a 69-kDa Ku86v; a C-terminus truncated 69-kDa variant Ku86 protein. In contrast, Ku86v proteins were not detected in the freshly isolated lymphocytes as was previously reported. Data also indicates that the Ku86v was not generated as a result of carbohydrate modification but that serine proteases may act on the full-length form of the protein. Conclusion These data confirm that MM cells contain bona fide Ku86v proteins that were generated intracellularly by a post-transcriptional mechanism, which required proteolytic processing.
Collapse
Affiliation(s)
- Charles A Gullo
- Department of Clinical Research (DCR), Cancer Immunology Laboratory, Singapore General Hospital (SGH), Outram Road, Singapore 169608, Singapore.
| | | | | | | |
Collapse
|
3
|
Gullo C, Au M, Feng G, Teoh G. The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta Rev Cancer 2006; 1765:223-34. [PMID: 16480833 DOI: 10.1016/j.bbcan.2006.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 11/30/2022]
Abstract
Ku is a heterodimeric protein made up of two subunits, Ku70 and Ku80. It was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. It is a highly versatile regulatory protein that has been implicated in multiple nuclear processes, e.g., DNA repair, telomere maintenance and apoptosis. Accordingly, Ku is thought to play a crucial role in maintenance of chromosomal integrity and cell survival. Recent reports suggest that there is a positive relationship between Ku and the development of cancer, making Ku an important candidate target for anticancer drug development. Specifically, prior studies suggest that a delicate balance exists in Ku expression, as overexpression of Ku proteins promotes oncogenic phenotypes, including hyperproliferation and resistance to apoptosis; whereas deficient or low expression of Ku leads to genomic instability and tumorigenesis. Such observations through various experimental models indicate that Ku may act as either a tumor suppressor or an oncoprotein. Hence, understanding the link between the various functions of Ku and the development of cancer in different cell systems may help in the development of novel anticancer therapeutic agents that target Ku. These studies may also increase our understanding of how Ku autoantibodies are generated in autoimmune diseases.
Collapse
Affiliation(s)
- Charles Gullo
- Multiple Myeloma Research Laboratory, MMRL, Singapore Health Services, SingHealth, 7 Hospital Drive, Block A #02-05, Singapore 169611, Republic of Singapore
| | | | | | | |
Collapse
|
4
|
Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A. Expression of DNA-dependent protein kinase in human granulocytes. Cell Res 2005; 14:331-40. [PMID: 15353130 DOI: 10.1038/sj.cr.7290233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNA-PK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Department of Medical Microbiology, Lund University, Malmo University Hospital, S-205 02 Malmo, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Yan KH, Liu PF, Tzeng HT, Chang WC, Chou WG, Pan RL. Characterization of DNA end-binding activities in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:617-622. [PMID: 15331090 DOI: 10.1016/j.plaphy.2004.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2003] [Accepted: 06/04/2004] [Indexed: 05/24/2023]
Abstract
DNA double-strand-breaks (DSB) are the most severe lesion in cells exposing to ionizing radiation and many other stress environments. Repair of DNA DSB is therefore critical to cellular survival. In this work, we observed the double-stranded DNA end-binding (DEB) like activities in rice (Oryza sativa L. cv. TN5) suspension cells and hypocotyls from etiolated mung bean (Vigna radiata L. TN5) seedlings. Higher plant DEB-like protein binds primarily to linearized double-stranded DNA ends. Competition of unlabeled probe was examined in double-stranded DEB assay of cell extracts from rice and mung bean. DEB-like activities of higher plants did not depend on sequence and types of double-stranded DNA ends. Distinct electrophoretic mobility shift patterns and binding features further indicate that DEB-like factors from various sources might not share identical structure and function, and probably belong to different types of DEB proteins from higher plants. Our evidence suggests that DEB proteins are certainly ubiquitous in all organisms probably for repairing and processing double-stranded DNA breaks from formidable lethal lesion.
Collapse
Affiliation(s)
- Kun H Yan
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu, Taiwan 30043, Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
The Ku heterodimer, which consists of Ku70 and Ku86 subunits, is a major sensor of DNA breaks. A truncated form of Ku86 lacking its C-terminus, termed Ku86 variant, has been detected in extracts from different human cells. Here we report that in human lymphocytes the Ku86 variant is not present in vivo but is generated in vitro upon cell lysis by a trypsin-like protease. The resulting Ku86 variant exists exclusively in complexes with Ku70, which possess strong affinity to DNA double strand termini. In different blood donors the levels of Ku86 variant correlated with the magnitude of radiation induced DNA breaks.
Collapse
Affiliation(s)
- Joanna Łanuszewska
- Department of Experimental and Clinical Radiobiology, Center of Oncology, Wybrzeze AK 15, Gliwice 44-100, Poland
| | | |
Collapse
|
7
|
Matheos D, Novac O, Price GB, Zannis-Hadjopoulos M. Analysis of the DNA replication competence of the xrs-5 mutant cells defective in Ku86. J Cell Sci 2003; 116:111-24. [PMID: 12456721 DOI: 10.1242/jcs.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The radiosensitive mutant xrs-5, a derivative of the Chinese hamster ovary (CHO) K1 cell line, is defective in DNA double-strand break repair and V(D)J recombination. The defective phenotypes of xrs-5 cells are complemented by the 86 kDa subunit of Ku antigen. OBA is a protein, previously purified from HeLa cells, that binds in a sequence-specific manner to mammalian origins of DNA replication. The DNA-binding subunit of OBA has been identified as Ku86. We tested the xrs-5 cell line for its ability to replicate a mammalian origin-containing plasmid, p186, in vivo and in vitro. In vivo, the p186 episomal DNA replication in transfected xrs-5 cells was reduced by 45% when compared with the CHO K1 cells transfected with p186. In vitro, although total and cytoplasmic cell extracts from xrs-5 cells replicated the p186 with the same efficiency as the parental CHO K1 cell extracts, xrs-5 nuclear extracts did not possess any detectable replication activity. Addition of affinity-purified OBA/Ku restored replication in the xrs-5 nuclear extract reaction. Western blot analyses showed that the levels of other replication proteins (Orc2, PCNA, DNA polymerase epsilon and delta, Primase and Topoisomerase IIalpha) were comparable in both the xrs-5 mutant and CHO K1 wild-type cell lines. In addition, the in vivo association of Ku with the DHFR origin-containing sequence (oribeta) was examined in both the CHO K1 and xrs-5 cell lines by a chromatin immunoprecipitation (ChIP) assay. Anti-Ku antibodies did not immunoprecipitate a detectable amount of Ku from the xrs-5 cells in the origin-containing sequence, in contrast to the CHO K1 cells, wherein Ku was found to be associated with the oribeta origin. The data implicate Ku antigen in in vivo and in vitro DNA replication and suggest the existence of another protein with Ku-like functions in the xrs-5 cells.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | | | | | | |
Collapse
|
8
|
Sallmyr A, Du L, Bredberg A. An inducible Ku86-degrading serine protease in human cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1593:57-68. [PMID: 12431784 DOI: 10.1016/s0167-4889(02)00331-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Ku autoantigen has been implicated in a number of cellular functions including growth control, immunoglobulin gene rearrangement and DNA repair. A variant truncated form of Ku86, with an apparent molecular weight of 70 kDa, has been reported to be present in many human cell types. We have previously shown that the amount of variant Ku86 is strongly increased in human peripheral blood mononuclear cells (PBMC) by storage of blood prior to isolation of the PBMC. In this study we report that formation of variant Ku86 in protein extracts is mediated by an inducible trypsin-like serine protease with a higher concentration in the nuclear compartment, as compared with the cytoplasm. However, experiments with SDS-PAGE assay of whole cells yielded no evidence of truncated Ku86, suggesting that the protease is not active in intact cells, but is exerting a marked activity during the protein extraction procedure. Interestingly, the protease level became markedly reduced upon transfer of the cells to growth medium. Protease induction did not correlate with apoptosis, necrotic cell death or with signs of general proteolysis or cytotoxicity. Our findings have methodological implications for the interpretation of experimental Ku86 data, and suggest that this protease may play a role for cellular regulation of Ku function.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Department of Medical Microbiology, Lund University, Malmö University Hospital, 205 02 Malmö, Sweden
| | | | | |
Collapse
|
9
|
Abstract
The Ku protein is an essential protein for DNA double-strand-break repair by the pathway of nonhomologous DNA end-joining (NHEJ). A previous study showed that Ku bound to one DNA molecule could transfer directly to another DNA molecule without being released into the solution first. Direct transfer requires the two DNA molecules having homologous cohesive ends with a minimum of four complementary bases. Results of this study reveal that direct transfer activity of Ku is regulated by NaCl and MgCl2. Increasing either one of the two cations can decrease the required amount of the other. However, the DNA end-binding activity of Ku is not affected by changing the concentration of the cations, indicating that the two activities are regulated independently. Most importantly, the results also show that Ku can transfer directly from one DNA molecule to another one with nonhomologous ends under the condition of 200 mM NaCl and 5mM MgCl2. The ability of direct transfer between DNAs with nonhomologous ends suggests that Ku can align or juxtapose two DNA ends during NHEJ.
Collapse
Affiliation(s)
- C F Chiu
- Department of Life Science, National Tsin-Hua University, Hsinchu, Taiwan, ROC
| | | | | |
Collapse
|
10
|
Sallmyr A, Henriksson G, Fukushima S, Bredberg A. Ku protein in human T and B lymphocytes: full length functional form and signs of degradation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1538:305-12. [PMID: 11336801 DOI: 10.1016/s0167-4889(01)00081-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) has been shown to take part in cell cycle regulatory signal transduction and in the repair of X-ray-induced DNA double-strand breaks. Functional DNA-PK is furthermore needed for the generation of antigen specificity during lymphocyte maturation. The Ku86 subunit of DNA-PK has been reported to exist in human B lymphocytes in a truncated form capable of binding to broken DNA but lacking the ability to activate the kinase function of DNA-PK. In the present work the Ku70 and Ku86 dimer proteins in T and B lymphocytes from human blood donors were analysed by immunoblotting and were observed apparently to be of full length. Also, nuclear protein extracted from B and non-B lymphocytes displayed DNA-dependent kinase activity. However, a minor fraction of Ku86 in lymphocytes was observed to be truncated with a molecular mass of approx. 70 kDa.
Collapse
Affiliation(s)
- A Sallmyr
- Department of Medical Microbiology, Lund University, Malmö University Hospital, S-205 02, Malmö, Sweden
| | | | | | | |
Collapse
|
11
|
Tai YT, Teoh G, Lin B, Davies FE, Chauhan D, Treon SP, Raje N, Hideshima T, Shima Y, Podar K, Anderson KC. Ku86 variant expression and function in multiple myeloma cells is associated with increased sensitivity to DNA damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6347-55. [PMID: 11086072 DOI: 10.4049/jimmunol.165.11.6347] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.
Collapse
Affiliation(s)
- Y T Tai
- Department of Adult Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|