1
|
Zobeiri OA, Cullen KE. Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. eLife 2022; 11:75018. [PMID: 35467528 PMCID: PMC9075952 DOI: 10.7554/elife.75018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to accurately control our posture and perceive our spatial orientation during self-motion requires knowledge of the motion of both the head and body. However, while the vestibular sensors and nuclei directly encode head motion, no sensors directly encode body motion. Instead, the integration of vestibular and neck proprioceptive inputs is necessary to transform vestibular information into the body-centric reference frame required for postural control. The anterior vermis of the cerebellum is thought to play a key role in this transformation, yet how its Purkinje cells transform multiple streams of sensory information into an estimate of body motion remains unknown. Here, we recorded the activity of individual anterior vermis Purkinje cells in alert monkeys during passively applied whole-body, body-under-head, and head-on-body rotations. Most Purkinje cells dynamically encoded an intermediate representation of self-motion between head and body motion. Notably, Purkinje cells responded to both vestibular and neck proprioceptive stimulation with considerable heterogeneity in their response dynamics. Furthermore, their vestibular responses were tuned to head-on-body position. In contrast, targeted neurons in the deep cerebellar nuclei are known to unambiguously encode either head or body motion across conditions. Using a simple population model, we established that combining responses of~40-50 Purkinje cells could explain the responses of these deep cerebellar nuclei neurons across all self-motion conditions. We propose that the observed heterogeneity in Purkinje cell response dynamics underlies the cerebellum’s capacity to compute the dynamic representation of body motion required to ensure accurate postural control and perceptual stability in our daily lives.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
2
|
Historic notes on anatomic, physiologic, and clinical research on the cerebellum. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:3-26. [PMID: 29903448 DOI: 10.1016/b978-0-444-63956-1.00001-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter is concerned with ideas on the function, structure, and pathology that shaped our present knowledge of the cerebellum. One of the main themes in its early history is its localization subtentorially, leading to misattributions due to clinical observations in trauma and lesion experiments that caused collateral damage to the brainstem. Improvement of techniques led to the insight that it plays a role in movement control (Rolando) or coordination (Flourens). Purkinje initiated the histology of the cerebellar cortex in 1837. Luciani's experiments in 1891 led him to conclude that the cerebellum has a tonic facilitating effect on central structures. Cajal identified the elements of the cortex and their circuitry (1888-1891). The inhibitory nature of the interneurons and the Purkinje cells, and the excitatory connections of the mossy and climbing afferents and the granule cells were established much later by Eccles and Ito. A functional localization for the coordinating action of the cerebellum of the motor system, based on local expansion of the folial chains, was devised by Bolk in 1906. Babinski and Holmes contributed to anatomoclinical insights. Magnus and coworkers showed the cerebellum does not play an essential role in body posture. The heterogeneity of the Purkinje cells with respect to their connections and histochemistry found its expression in the zonal organization of the cerebellar cortex. The roots of modern developments, like cerebellar learning and its involvement in cognition and emotion, can be traced to the theories of Marr and Albus and the pioneering work of the Leiners and Dow.
Collapse
|
3
|
Hami J, Vafaei-Nezhad S, Sadeghi A, Ghaemi K, Taheri MMH, Fereidouni M, Ivar G, Hosseini M. Synaptogenesis in the Cerebellum of Offspring Born to Diabetic Mothers. J Pediatr Neurosci 2017; 12:215-221. [PMID: 29204194 PMCID: PMC5696656 DOI: 10.4103/jpn.jpn_144_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is increasing evidence that maternal diabetes mellitus during the pregnancy is associated with a higher risk of neurodevelopmental and neurofunctional anomalies including motor dysfunctions, learning deficits, and behavioral problems in offspring. The cerebellum is a part of the brain that has long been recognized as a center of movement balance and motor coordination. Moreover, recent studies in humans and animals have also implicated the cerebellum in cognitive processing, sensory discrimination, attention, and learning and memory. Synaptogenesis is one of the most crucial events during the development of the central nervous system. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered to be a marker for synaptic density and synaptogenesis. Here, we review the manuscripts focusing on the negative impacts of maternal diabetes in pregnancy on the expression or localization of SYP in the developing cerebellar cortex. We believe that the alteration in synaptogenesis or synapse density may be part of the cascade of events through which diabetes in pregnant women affects the newborn's cerebellum.
Collapse
Affiliation(s)
- Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Akram Sadeghi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kazem Ghaemi
- Department of Neurosurgery, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ghasem Ivar
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Department of Public Health, Research Centre of Experimental Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Abstract
Vertebrate cerebella occupy a position in the rostral roof of the 4th ventricle and share a common pattern in the structure of their cortex. They differ greatly in their external form, the disposition of the neurons of the cerebellar cortex and in the prominence of their afferent, intrinsic and efferent connections.
Collapse
Affiliation(s)
- J Voogd
- Department of Anatomy, Erasmus University Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
5
|
Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. THE CEREBELLUM 2012; 10:422-34. [PMID: 20838950 DOI: 10.1007/s12311-010-0208-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of many molecules, in particular, zebrin II/aldolase C. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: in mouse, these are the anterior zone (∼lobules I-V), the central zone (∼lobules VI-VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX), and the nodular zone (∼ventral lobule IX + lobule X). A fifth transverse zone-the lingular zone (∼lobule I)-is found in birds and bats. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. To explore this model further and to broaden our understanding of the evolution of cerebellar patterning, stripes in the PZ have been compared in multiple mammalian species. We conclude that a posterior zone with a conserved stripe organization is a common feature of the mammalian and avian cerebellar vermis and that zonal boundaries are independent of cerebellar lobulation.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | | |
Collapse
|
6
|
Kim JY, Marzban H, Chung SH, Watanabe M, Eisenman LM, Hawkes R. Purkinje cell compartmentation of the cerebellum of microchiropteran bats. J Comp Neurol 2009; 517:193-209. [PMID: 19731335 DOI: 10.1002/cne.22147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transverse boundaries divide the mammalian cerebellar cortex into transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. This topography is highly conserved across the Mammalia. Bats have a remarkable cerebellum with presumed adaptations to flight and to echolocation, but nothing is known of its compartmentation. We have therefore used two Purkinje cell compartmentation antigens, zebrin II/aldolase C and phospholipase Cbeta4, to reveal the topography of the cerebellum in microchiropteran bats. Three species of bat were studied, Lasiurus cinereus, Lasionycteris noctivagans, and Eptesicus fuscus. A reproducible pattern of zones and stripes was revealed that is similar across the three species. The architecture of the bat cerebellum conforms to the ground plan of other mammals. However, two exceptions to the highly conserved mammalian architectural plan were revealed. First, many Purkinje cells in lobule I express zebrin II. A zebrin II-immunopositive lobule I has not been seen previously in mammals but is characteristic of the avian cerebellum. Second, lobules VI-VII comprise the large central zone. Within the central zone two subdomains are evident, a small anterior subdomain (lobule VI) in which Purkinje cells are predominantly zebrin II-immunopositive/PLCbeta4-immunonegative, as in other mammals, and a posterior subdomain (lobule VII), in which alternating zebrin II/phospholipase Cbeta4 stripes are prominent.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Cell Biology and Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
7
|
van Broekhoven PCA, Frens MA, Sillevis Smitt PA, van der Geest JN. Eye movements as a marker for cerebellar damage in paraneoplastic neurological syndromes. Parkinsonism Relat Disord 2009; 13 Suppl 3:S296-300. [PMID: 18267253 DOI: 10.1016/s1353-8020(08)70019-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebellar disturbances can induce a variety of motor deficits, ranging from severe ataxia to mild deficits of fine motor control. Although motor disturbances appear as an important clinical feature in many neurological disorders, mild disturbances are often difficult to assess properly. Eye movement recordings using video-oculography in a group of patients with a paraneoplastic neurological disorder revealed subtle saccadic and smooth pursuit deficits when compared to controls. We conclude that an easy quantification of eye movement control may assist in the diagnosis and follow-up of mild motor disturbances in patients with neurological disorders, especially when such signs are not overt during clinical neurological examination.
Collapse
|
8
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
9
|
Sekerková G, Ilijic E, Mugnaini E. Bromodeoxyuridine administered during neurogenesis of the projection neurons causes cerebellar defects in rat. J Comp Neurol 2004; 470:221-39. [PMID: 14755513 DOI: 10.1002/cne.11016] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bromodeoxyuridine (BrdU) is broadly used in neuroscience to study embryonic development and adult neurogenesis. The potential toxicity of this halogenated pyrimidine analogue is frequently neglected. In this study, we administered BrdU in small doses by the progressively delayed cumulative labeling method to immunocytochemically tag different cerebellar cell types with antibodies to specific markers and BrdU in the same section. The well-known structure of the cerebellum made it possible to ascertain several toxic effects of the treatment. Time-pregnant rats were given five or six injections of 5 or 6 mg of BrdU ( approximately 12-20 mg/kg) at 8-hour intervals over 2 successive days between day 11 and 21 of pregnancy (E11-E12 to E20-E21), and the adult progeny was processed by immunocytochemistry. We demonstrate that this treatment effectively labeled distinct cerebellar cell populations but produced striking defects in the proliferation, migration, and settling of the Purkinje cells; reduced the size of the cerebellar cortex and nuclei; produced defects in the patterning of foliation; and also affected litter size, body weight, and mortality of the offspring. The observed toxic effects were consistent within individual treatment groups but varied between different treatment groups. Treatment with BrdU at the peak of neurogenesis of cerebellar projection neurons (E14) produced the most severe malformations. We observed no overt effects on the timing of neurogenesis for cerebellar neurons and glia across experimental groups. In conclusion, BrdU is a useful tool to study neural development, but its cytotoxicity represents a serious pitfall particularly when multiple doses are used to label cells.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Northwestern University Institute for Neuroscience, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
10
|
Karam SD, Dottori M, Ogawa K, Henderson JT, Boyd AW, Pasquale EB, Bothwell M. EphA4 is not required for Purkinje cell compartmentation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:29-38. [PMID: 11978390 DOI: 10.1016/s0165-3806(02)00278-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Purkinje cells of both the adult and the developing cerebellar cortex are organized into parasagittal stripes or 'segments' expressing a variety of biochemical markers. We show that in the developing mouse cerebellar cortex, members of the Eph receptor gene family are expressed in mediolaterally alternating Purkinje cell segments. Since members of the Eph receptors family have been shown to play a role in hindbrain segmentation and boundary formation (Philos. Trans. R. Soc. Lond. B: Biol. Sci. 355 (2000) 993), we analyzed the effect of a null mutation of the EphA4 gene on Purkinje cell compartmentation. Using well characterized markers of Purkinje cell compartmentation in both the developing and the adult cerebellum, we observed no significant alteration in the banding pattern of these markers between the EphA4 knockout mice and their wild type controls. The ribboned pattern of migrating granule cells in the developing cerebellum also appears unaltered. The expression of other members of this gene family, including ephrin-B2, EphA2, and ephrin-A1, in a compartmentalized pattern within the Purkinje cell layer suggests a possible redundancy and/or a compensation of EphA4 function in the segmental patterning of cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Sana D Karam
- Department of Physiology and Biophysics, University of Washington, P.O. Box 357290, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Paterlini M, Revilla V, Grant AL, Wisden W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 2000; 99:205-16. [PMID: 10938426 DOI: 10.1016/s0306-4522(00)00201-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuronal calcium sensor proteins are members of the calcium-binding protein superfamily. They control localized calcium signalling on membranes and may make G-protein cascades sensitive to cytosolic calcium. The family members are recoverin (visinin, S-modulin), neuronal calcium sensor-1 (frequenin), hippocalcin, neuronal visinin-like protein-1 (visinin-like protein, neurocalcin-alpha), neuronal visinin-like protein-2 and neuronal visinin-like protein-3. Recoverin is expressed only in the retina and pineal gland. Using in situ hybridization, we mapped the expression of the other neuronal calcium sensor protein genes in the adult rat brain. Neuronal visinin-like protein-1 messenger RNA has a widespread distribution and is abundant in all brain areas except the caudate-putamen. Neuronal calcium sensor-1 gene expression is pan-neuronal. Neuronal calcium sensor-1 messenger RNA is present in the dendrites of hippocampal pyramidal and granule cells, suggesting a specific role in dendritic function. Hippocalcin and neuronal visinin-like protein-2 are mainly expressed in the forebrain and have similar expression patterns (neocortex, hippocampus and caudate-putamen). Neuronal visinin-like protein-3 has the most restricted expression; its highest expression level is in the cerebellum (Purkinje and granule cells). However, the neuronal visinin-like protein-3 gene is also expressed in many ventral nuclei throughout the fore- and midbrain, in the medial habenulae, and in the superior and inferior colliculi. The neuronal calcium sensor proteins are a relatively unexplored family of Ca(2+)-binding proteins. They are likely to be involved in many diverse areas of neuronal signalling. In this paper, we describe their expression in the rat brain as determined by in situ hybridization. As all five neuronal calcium sensor protein genes have distinctive expression patterns, they probably perform specific functions.
Collapse
Affiliation(s)
- M Paterlini
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990816)411:1%3c97::aid-cne8%3e3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 1999; 411:97-118. [PMID: 10404110 DOI: 10.1002/(sici)1096-9861(19990816)411:1<97::aid-cne8>3.0.co;2-o] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Projection of neurons in the lateral reticular nucleus (LRN) to the cerebellar cortex (Cx) and the deep cerebellar nuclei (DCN) was studied in the rat by using the anterograde tracer biotinylated dextran amine (BDA). After injection of BDA into the LRN, labeled terminals were seen bilaterally in most cases in the vermis, intermediate zone, and hemisphere of the anterior lobe, and in various areas in the posterior lobe, except the flocculus, paraflocculus, and nodulus. Areas of dense terminal projection were often organized in multiple longitudinal zones. The entire axonal trajectory of single axons of labeled LRN neurons was reconstructed from serial sections. Stem axons entered the cerebellum through the inferior cerebellar peduncle (mostly ipsilateral), and ran transversely in the deep cerebellar white matter. They often entered the contralateral side across the midline. Along the way, primary collaterals were successively given off from the transversely running stem axons at almost right angles to the Cx and DCN, and individual primary collaterals had longitudinal arborizations that terminated as mossy fibers in multiple lobules of the Cx. These collaterals arising from single LRN axons terminated bilaterally or unilaterally in the vermis, intermediate area, and sometimes hemisphere, and in different cerebellar and vestibular nuclei simultaneously. The cortical terminals of single axons appeared to be distributed in multiple longitudinal zones that were arranged in a mediolateral direction. All of the LRN axons examined (n = 29) had axon collaterals to the DCN. All of the terminals observed in the DCN and vestibular nuclei belonged to axon collaterals of mossy fibers terminating in the Cx.
Collapse
Affiliation(s)
- H S Wu
- Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | |
Collapse
|
16
|
Savaki HE, Dalezios Y. 14C-deoxyglucose mapping of the monkey brain during reaching to visual targets. Prog Neurobiol 1999; 58:473-540. [PMID: 10408655 DOI: 10.1016/s0301-0082(98)00080-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The strategies used by the macaca monkey brain in controlling the performance of a reaching movement to a visual target have been studied by the quantitative autoradiographic 14C-DG method. Experiments on visually intact monkeys reaching to a visual target indicate that V1 and V2 convey visuomotor information to the cortex of the superior temporal and parietoccipital sulci which may encode the position of the moving forelimb, and to the cortex in the ventral part and lateral bank of the intraparietal sulcus which may encode the location of the visual target. The involvement of the medial bank of the intraparietal sulcus in proprioceptive guidance of movement is also suggested on the basis of the parallel metabolic effects estimated in this region and in the forelimb representations of the primary somatosensory and motor cortices. The network including the inferior postarcuate skeletomotor and prearcuate oculomotor cortical fields and the caudal periprincipal area 46 may participate in sensory-to-motor and oculomotor-to-skeletomotor transformations, in parallel with the medial and lateral intraparietal cortices. Experiments on split brain monkeys reaching to visual targets revealed that reaching is always controlled by the hemisphere contralateral to the moving forelimb whether it is visually intact or 'blind'. Two supplementary mechanisms compensate for the 'blindness' of the hemisphere controlling the moving forelimb. First, the information about the location of the target is derived from head and eye movements and is sent to the 'blind' hemisphere via inferior parietal cortical areas, while the information about the forelimb position is derived from proprioceptive mechanisms and is sent via the somatosensory and superior parietal cortices. Second, the cerebellar hemispheric extensions of vermian lobules V, VI and VIII, ipsilateral to the moving forelimb, combine visual and oculomotor information about the target position, relayed by the 'seeing' cerebral hemisphere, with sensorimotor information concerning cortical intended and peripheral actual movements of the forelimb, and then send this integrated information back to the motor cortex of the 'blind' hemisphere, thus enabling it to guide the contralateral forelimb to the target.
Collapse
Affiliation(s)
- H E Savaki
- Department of Basic Sciences, School of Health Sciences, University of Crete, Iraklion, Greece.
| | | |
Collapse
|