1
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kragtorp KA, Miller JR. Integrin alpha5 is required for somite rotation and boundary formation in Xenopus. Dev Dyn 2007; 236:2713-20. [PMID: 17685483 DOI: 10.1002/dvdy.21280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The morphogenesis of somites in Xenopus laevis is characterized by a complex process of cell turning that requires coordinated regulation of cell shape, adhesion, and motility. The integrin alpha5 subunit has been implicated in the formation of somite boundaries in organisms utilizing epithelialization to create morphologically distinct somites, but its function has not been examined in Xenopus. We used a splice-blocking morpholino to knock down expression of integrin alpha5 during somite formation. Loss of integrin alpha5 delayed somite turning and accumulation of integrin beta1 at somite boundaries, and disrupted the fibronectin matrix surrounding developing somites. Irregular somite boundaries with a sparse and discontinuous fibronectin matrix formed upon eventual completion of somite turning. Recovery of somite morphology was improved, but still incomplete in far posterior somites. These data demonstrate that the role of integrin alpha5 in somite boundary formation is conserved in a species using a unique mechanism of somitogenesis.
Collapse
Affiliation(s)
- Katherine A Kragtorp
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
3
|
Kragtorp KA, Miller JR. Regulation of somitogenesis by Ena/VASP proteins and FAK during Xenopus development. Development 2006; 133:685-95. [PMID: 16421193 DOI: 10.1242/dev.02230] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metameric organization of the vertebrate body plan is established during somitogenesis as somite pairs sequentially form along the anteroposterior axis. Coordinated regulation of cell shape, motility and adhesion are crucial for directing the morphological segmentation of somites. We show that members of the Ena/VASP family of actin regulatory proteins are required for somitogenesis in Xenopus. Xenopus Ena (Xena) localizes to the cell periphery in the presomitic mesoderm (PSM), and is enriched at intersomitic junctions and at myotendinous junctions in somites and the myotome, where it co-localizes with β1-integrin, vinculin and FAK. Inhibition of Ena/VASP function with dominant-negative mutants results in abnormal somite formation that correlates with later defects in intermyotomal junctions. Neutralization of Ena/VASP activity disrupts cell rearrangements during somite rotation and leads to defects in the fibronectin (FN) matrix surrounding somites. Furthermore, inhibition of Ena/VASP function impairs FN matrix assembly, spreading of somitic cells on FN and autophosphorylation of FAK, suggesting a role for Ena/VASP proteins in the modulation of integrin-mediated processes. We also show that inhibition of FAK results in defects in somite formation, blocks FN matrix deposition and alters Xena localization. Together, these results provide evidence that Ena/VASP proteins and FAK are required for somite formation in Xenopus and support the idea that Ena/VASP and FAK function in a common pathway to regulate integrin-dependent migration and adhesion during somitogenesis.
Collapse
Affiliation(s)
- Katherine A Kragtorp
- Department of Genetics, Cell Biology and Development and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
4
|
Alfandari D, Cousin H, Gaultier A, Hoffstrom BG, DeSimone DW. Integrin alpha5beta1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev Biol 2003; 260:449-64. [PMID: 12921745 DOI: 10.1016/s0012-1606(03)00277-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During early embryonic development, cranial neural crest cells emerge from the developing mid- and hindbrain. While numerous studies have focused on integrin involvement in trunk neural crest cell migration, comparatively little is known about mechanisms of cranial neural crest cell migration. We show that fibronectin, but not laminin, vitronectin, or type I collagen can support cranial neural crest cell migration and segmentation in vitro. These behaviors require both the RGD and "synergy" sites located within the central cell-binding domain of fibronectin. While these two sites are sufficient for cranial neural crest cell migration, we find that the second Heparin-binding domain of fibronectin can provide additional support for cranial neural crest cell migration in vitro. Finally, using a function blocking monoclonal antibody, we show that cranial neural crest cell migration on fibronectin requires the integrin alpha5beta1.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Cell Biology, University of Virginia Health Sciences System, Box 800732, School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
5
|
Larraín J, Brown C, De Robertis EM. Integrin-alpha3 mediates binding of Chordin to the cell surface and promotes its endocytosis. EMBO Rep 2003; 4:813-8. [PMID: 12897802 PMCID: PMC1326342 DOI: 10.1038/sj.embor.embor902] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 06/16/2003] [Accepted: 06/17/2003] [Indexed: 11/08/2022] Open
Abstract
Dorsoventral patterning in animal development is regulated by a morphogenetic gradient of Bone morphogenetic protein signalling, which is established by a set of proteins that are conserved from Drosophila to vertebrates. These include Chordin (Chd)/Short gastrulation, Xolloid/Tolloid and Twisted gastrulation. Here, we report the identification of a cell-surface component of this morphogenetic pathway. Prompted by the observation that Chd protein bound to the surface of certain cell lines with subnanomolar affinity, we identified two cell-surface proteins that bind to Chd, one of which corresponds to Integrin-alpha3. Integrin-alpha3 and Chd are co-expressed in the Xenopus embryo. Transfection of Integrin-alpha3 increased the binding of Chd to the cell surface, which was competed by an excess of soluble Integrin-alpha3. After binding to the cell surface, Chd was translocated into intracellular endocytic compartments in a temperature-dependent manner. We propose that Integrin-alpha3 may regulate the concentration of Chd protein in the extracellular space by endocytosis.
Collapse
Affiliation(s)
- Juan Larraín
- Present address: Department of Cellular and
Molecular Biology, Centre for Cell Regulation and Pathology, Pontificia
Universidad Católica de Chile, Alameda 340,
Santiago, Chile
| | - Carlos Brown
- Howard Hughes Medical Institute, and Department
of Biological Chemistry, University of California, Los
Angeles, California 90095-1662, USA
| | - Eddy M. De Robertis
- Howard Hughes Medical Institute, and Department
of Biological Chemistry, University of California, Los
Angeles, California 90095-1662, USA
- Tel: +1 310 206 1463; Fax: +1 310 206 2008;
| |
Collapse
|
6
|
Na J, Marsden M, DeSimone DW. Differential regulation of cell adhesive functions by integrin alpha subunit cytoplasmic tails in vivo. J Cell Sci 2003; 116:2333-43. [PMID: 12711704 DOI: 10.1242/jcs.00445] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion to fibronectin (FN) is crucial for early vertebrate morphogenesis. In Xenopus gastrulae, several distinct integrin-dependent adhesive behaviors can be identified: adhesion of cells to FN, assembly of FN fibrils, and initiation of cell spreading and migration in response to mesoderm inducing signals. We have taken a chimeric integrin approach to investigate the role of the integrin alpha cytoplasmic tail in the specification of these developmentally significant adhesive functions. Cytoplasmic tail-deleted alpha4 constructs and alpha4-ectodomain/alpha-cytoplasmic tail chimeras were generated and expressed in whole embryos. Normal gastrula cells lack integrin alpha4 and, correspondingly, are unable to adhere to the alpha4 ligand, the V-region of FN. The ability of alpha4 constructs to promote adhesive behaviors was established by placing tissue explants or dissociated cells on an FN V-region fusion protein that lacks the RGD (Arg-Gly-Asp)/synergy sites or treating whole embryos with antibodies that block endogenous integrin-FN interactions. We found that each alpha4 cytoplasmic domain deletion mutant and alpha-tail chimera examined could support cell attachment; however, activin induction-dependent cell spreading, mesoderm cell and explant motility, and the ability to assemble FN matrix on the blastocoel roof varied with specific alpha subunit tail sequences. These data suggest that alpha cytoplasmic tail signaling and changes in integrin activation state can regulate a variety of developmentally significant adhesive behaviors in both space and time.
Collapse
Affiliation(s)
- Jie Na
- Department of Cell Biology, University of Virginia School of Medicine, PO Box 800732, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
7
|
DiPersio CM, Trevithick JE, Hynes RO. Functional comparison of the alpha3A and alpha3B cytoplasmic domain variants of the chicken alpha3 integrin subunit. Exp Cell Res 2001; 268:45-60. [PMID: 11461117 DOI: 10.1006/excr.2001.5273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin alpha3beta1 can be alternatively spliced to generate alpha3A and alpha3B cytoplasmic domain variants that are conserved among vertebrates. To identify distinct functions of these variants, we transfected cells with intact alpha3 integrins or chimeric receptors. alpha3Abeta1 and alpha3Bbeta1 each localized to focal contacts in keratinocytes on an extracellular matrix rich in laminin-5, to which both are known to bind with high affinity. However, alpha3B accumulated intracellularly in keratinocytes on collagen, suggesting that laminin binding may stabilize alpha3Bbeta1 surface expression. Neither alpha3 cytoplasmic domain affected recruitment of chimeric alpha5 integrins to fibronectin-induced focal contacts, and either substituted for the alpha5 cytoplasmic domain in alpha5beta1-mediated cell migration. However, the alpha5/alpha3B chimera localized to cell-cell borders in MDCK or CHO cells to a lesser extent than did the alpha5/alpha3A chimera. To determine whether the alpha3 cytoplasmic domains conferred distinct localization to a nonintegrin protein, we transfected cells with interleukin-2 receptor (IL-2R) chimeras containing the alpha3 cytoplasmic domains. The IL-2R/alpha3A chimera was expressed efficiently on the cell surface, while the IL-2R/alpha3B chimera accumulated intracellularly. Our findings suggest that the alpha3B cytoplasmic domain harbors a retention signal that is regulated in an intact integrin and can alter cell surface expression and distribution of alpha3beta1.
Collapse
Affiliation(s)
- C M DiPersio
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
8
|
Abstract
Cellular interactions with laminin are important for numerous morphogenetic events. In Xenopus, the first of these is neurulation. The integrin alpha6 subunit mediates an attachment of the cells of the neural plate to the underlying basal lamina. A disruption of this interaction results in embryos that fail to neurulate (T. E. Lallier et al., 1996, Development 122, 2539-2554). Here we provide evidence supporting the specificity of this phenomenon and characterize developmental events as either disrupted or unaffected by a perturbation of alpha6 integrin expression. First, reduction of alpha6 integrin expression does not halt mitotic division throughout the embryo, indicating that the neural defects observed are not simply a global perturbation of all developmental processes. Second, a gene associated with dorsal mesoderm formation, brachyury, is expressed normally in alpha6 integrin-perturbed embryos. Third, the expression of BMP4, noggin, chordin, and follistatin, all of which are critical for neural induction, are at near normal levels. In addition, several genes expressed shortly after neural induction (N-CAM, nrp1, and Xanf1) are not perturbed in nonneurulating embryos. Interestingly, expression of one neural-specific gene (synaptobrevin), which is normally detectable late in neurulation, is abolished in these alpha6 integrin-perturbed embryos. Furthermore, the spatial expression of several transcripts is expanded in alpha6 integrin-perturbed embryos (orthodenticle and engrailed). Taken together, these data indicate that while alpha6 integrin-mediated interactions with laminin are required for neurulation, they are not required for the initial processes of neural induction. However, these cell-extracellular matrix interactions appear to be important in later inductive events and rostrocaudal patterning of the neural tube.
Collapse
Affiliation(s)
- T E Lallier
- Department of Cell Biology and Anatomy, Louisiana State University Medical Center School of Dentistry, 1100 Florida Avenue, New Orleans, Louisiana, 70119, USA.
| | | |
Collapse
|
9
|
Abstract
Active zones are the sites along nerve terminals where synaptic vesicles dock and undergo calcium-dependent exocytosis during synaptic transmission. Here we show, by immunofluorescent staining with antibodies generated against Xenopus laevis integrins, that alpha3beta1 integrin is concentrated at the active zones of Xenopus motor nerve terminals. Because integrins can link extracellular matrix molecules to cytoskeletal elements and participate in the formation of signaling complexes, the localization of integrin at active zones suggests that it may play a role in the adhesion of the nerve terminals to the synaptic basal lamina, in the formation and maintenance of active zones, and in some of the events associated with calcium-dependent exocytosis of neurotransmitter. Our findings also indicate that the integrin composition of the terminal Schwann cells differs from that of the motor nerve terminals, and this may account at least in part for differences in their adhesiveness to the synaptic basal lamina.
Collapse
|
10
|
Abstract
The origin and development of the amphibian somitic mesoderm is summarized and reviewed with the goal of identifying issues most profitably pursued in these organisms. The location of the prospective somitic mesoderm as well as the cell movements bringing this tissue into its definitive position varies among amphibians. These variations have implications for the tissue interactions patterning the embryo, the design of the gastrulation movements, the role of the somitic mesoderm in early patterning and morphogenic processes, and the nature of the developmental pathway leading to somites. The presegmentation morphogenesis, the process of segmentation, and the subsequent, postsegmentation morphogenesis of the somitic mesoderm also varies considerably among amphibians. Although segmentation in amphibians shares what may be highly conserved and general patterning mechanisms with other vertebrates, the somitic developmental pathway as a whole is not conservative and has been capable of accommodating the use of a number of quite different morphogenic processes, all leading to very similar ends. The major challenges in studying amphibian somitogenesis are to develop molecular markers for major components of the somite, to determine the derivatives of the somite with better cell tracing experiments, and learning to work with the small dermatomal and sclerotomal cell populations found in most species. A potential advantage is that the diversity of somitogenesis among the amphibians makes this group ideal for studying the evolution of developmental processes. In addition, many amphibians allow direct observation of somitogenesis with great resolution and permit biomechanical analysis of tissues participating in morphogenesis, thus making it possible to analyze cellular mechanisms of morphogenesis in ways not possible in most other systems.
Collapse
Affiliation(s)
- R Keller
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| |
Collapse
|