1
|
Saponaro C, Damato M, Stanca E, Aboulouard S, Zito FA, De Summa S, Traversa D, Schirosi L, Bravaccini S, Pirini F, Fonzi E, Tebaldi M, Puccetti M, Gaballo A, Pantalone L, Ronci M, Magnani L, Sergi D, Tinelli A, Tacconi S, Siculella L, Giudetti AM, Fournier I, Salzet M, Trerotola M, Vergara D. Unraveling the protein kinase C/NDRG1 signaling network in breast cancer. Cell Biosci 2024; 14:156. [PMID: 39736699 DOI: 10.1186/s13578-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC). Analysis of the TCGA dataset showed a significant positive correlation between NDRG1 and PRKCA expression, suggesting a mechanistic role of protein kinase C (PKC) in the regulation of NDRG1. We then assessed the hypothesis that PKC might modulate the activity of NDRG1, and observed that different acute stress conditions converging on PKC activation lead to enhanced NDRG1 expression. This mechanism was found to be specific for NDRG1 as the expression of other NDRG members was not affected. Moreover, CRISPR-based inhibition of NDRG1 expression was obtained in a BC cell line, and showed that this protein is a key driver of BC cell invasion through the Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated cofilin pathway that regulates stress fiber assembly, and the modulation of extracellular matrix reorganization related genes. Together, our findings highlight the potential of NDRG1 as a new BC biomarker and uncover a novel mechanism of regulation of NDRG1 expression that might lead to innovative therapeutic strategies.
Collapse
Affiliation(s)
- C Saponaro
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - M Damato
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - E Stanca
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - S Aboulouard
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - F A Zito
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - D Traversa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - L Schirosi
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S Bravaccini
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - F Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - E Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Puccetti
- Azienda Unità Sanitaria Locale di Imola, Imola, Italy
| | - A Gaballo
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - L Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Oncology and Haemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - D Sergi
- Department of Radiology, V. Fazzi Hospital, 73100, Lecce, Italy
| | - A Tinelli
- Department of Obstetrics and Gynecology and CERICSAL, (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti Hospital", 73020, ScorranoScorrano (Lecce), Italy
| | - S Tacconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - L Siculella
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - A M Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - I Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - D Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Terada A, Tsuda N, Tasaki S, Park J, Nasu H, Tasaki K, Katsuda T, Nishio S, Yamaguchi T, Sanada S, Akiba J, Kuwano M, Ono M, Ushijima K. N-Myc Downstream Regulated Gene-1 May Play an Important Role in the Prognosis of Ovarian Cancer, in Its Association with Beta-Catenin. Kurume Med J 2023; 69:39-46. [PMID: 37793886 DOI: 10.2739/kurumemedj.ms6912010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
NDRG1 is a nickel- and calcium-inducible gene that plays important roles in the primary growth of malignant tumors, as well as in invasion and metastasis. This study investigated the associations of NDRG1 expression with cell adhesion and other clinicopathological factors in ovarian cancer. The clinical records of 123 women who underwent surgery for ovarian cancer in our institute were reviewed retrospectively. The expression of NDRG1, E-cadherin, and beta-catenin in surgical specimens were evaluated immunohistochemically. The NDRG1 expression level was significantly associated with beta-catenin expression, peritoneal metastasis outside the pelvic cavity, lymph node metastasis, and FIGO stages. The Kaplan-Meier analysis showed a significant association between the NDRG1 expression level and progression-free survival: high NDRG1 expression was related to poor survival. Our results suggest that the increased expression of NDRG1 is associated with cell adhesion and may be a poor prognostic indicator in women with ovarian cancer.
Collapse
Affiliation(s)
- Atsumu Terada
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Shingo Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Jangmyong Park
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Hiroki Nasu
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Kazuto Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Takahiro Katsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | | | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital
| | | | - Mayumi Ono
- Graduate School of Nursing, St.Mary's College
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| |
Collapse
|
3
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
4
|
Nataf S, Guillen M, Pays L. Irrespective of Plaque Activity, Multiple Sclerosis Brain Periplaques Exhibit Alterations of Myelin Genes and a TGF-Beta Signature. Int J Mol Sci 2022; 23:ijms232314993. [PMID: 36499320 PMCID: PMC9738407 DOI: 10.3390/ijms232314993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In a substantial share of patients suffering from multiple sclerosis (MS), neurological functions slowly deteriorate despite a lack of radiological activity. Such a silent progression, observed in either relapsing-remitting or progressive forms of MS, is driven by mechanisms that appear to be independent from plaque activity. In this context, we previously reported that, in the spinal cord of MS patients, periplaques cover large surfaces of partial demyelination characterized notably by a transforming growth factor beta (TGF-beta) molecular signature and a decreased expression of the oligodendrocyte gene NDRG1 (N-Myc downstream regulated 1). In the present work, we re-assessed a previously published RNA expression dataset in which brain periplaques were originally used as internal controls. When comparing the mRNA profiles obtained from brain periplaques with those derived from control normal white matter samples, we found that, irrespective of plaque activity, brain periplaques exhibited a TGF-beta molecular signature, an increased expression of TGFB2 (transforming growth factor beta 2) and a decreased expression of the oligodendrocyte genes NDRG1 (N-Myc downstream regulated 1) and MAG (myelin-associated glycoprotein). From these data obtained at the mRNA level, a survey of the human proteome allowed predicting a protein-protein interaction network linking TGFB2 to the down-regulation of both NDRG1 and MAG in brain periplaques. To further elucidate the role of NDRG1 in periplaque-associated partial demyelination, we then extracted the interaction network linking NDRG1 to proteins detected in human central myelin sheaths. We observed that such a network was highly significantly enriched in RNA-binding proteins that notably included several HNRNPs (heterogeneous nuclear ribonucleoproteins) involved in the post-transcriptional regulation of MAG. We conclude that both brain and spinal cord periplaques host a chronic process of tissue remodeling, during which oligodendrocyte myelinating functions are altered. Our findings further suggest that TGFB2 may fuel such a process. Overall, the present work provides additional evidence that periplaque-associated partial demyelination may drive the silent progression observed in a subset of MS patients.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue de Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
- Correspondence:
| | - Marine Guillen
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue de Doyen Lépine, F-69500 Bron, France
| | - Laurent Pays
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, F-69003 Lyon, France
- Stem-Cell and Brain Research Institute, 18 Avenue de Doyen Lépine, F-69500 Bron, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
5
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
6
|
Beniamino Y, Cenni V, Piccioli M, Ciurli S, Zambelli B. The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development. Biomolecules 2022; 12:1272. [PMID: 36139110 PMCID: PMC9496542 DOI: 10.3390/biom12091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nickel exposure is associated with tumors of the respiratory tract such as lung and nasal cancers, acting through still-uncharacterized mechanisms. Understanding the molecular basis of nickel-induced carcinogenesis requires unraveling the mode and the effects of Ni(II) binding to its intracellular targets. A possible Ni(II)-binding protein and a potential focus for cancer treatment is hNDRG1, a protein induced by Ni(II) through the hypoxia response pathway, whose expression correlates with higher cancer aggressiveness and resistance to chemotherapy in lung tissue. The protein sequence contains a unique C-terminal sequence of 83 residues (hNDRG1*C), featuring a three-times-repeated decapeptide, involved in metal binding, lipid interaction and post-translational phosphorylation. In the present work, the biochemical and biophysical characterization of unmodified hNDRG1*C was performed. Bioinformatic analysis assigned it to the family of the intrinsically disordered regions and the absence of secondary and tertiary structure was experimentally proven by circular dichroism and NMR. Isothermal titration calorimetry revealed the occurrence of a Ni(II)-binding event with micromolar affinity. Detailed information on the Ni(II)-binding site and on the residues involved was obtained in an extensive NMR study, revealing an octahedral paramagnetic metal coordination that does not cause any major change of the protein backbone, which is coherent with CD analysis. hNDRG1*C was found in a monomeric form by light-scattering experiments, while the full-length hNDRG1 monomer was found in equilibrium between the dimer and tetramer, both in solution and in human cell lines. The results are the first essential step for understanding the cellular function of hNDRG1*C at the molecular level, with potential future applications to clarify its role and the role of Ni(II) in cancer development.
Collapse
Affiliation(s)
- Ylenia Beniamino
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Mario Piccioli
- Department of Chemistry, Center for Magnetic Resonance, University of Florence, 50121 Florence, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| |
Collapse
|
7
|
Nishigaki A, Tsubokura H, Ishida M, Hashimoto Y, Yoshida A, Hisamatsu Y, Tsuzuki‐Nakao T, Murata H, Okada H. NDRG1 is expressed in human granulosa cells: An implicative role of NDRG1 in the ovary. Reprod Med Biol 2022; 21:e12437. [PMID: 35386369 PMCID: PMC8967294 DOI: 10.1002/rmb2.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose N-myc downstream-regulated gene 1 (NDRG1) is expressed in various human tissues and plays a role in regulating cellular proliferation, angiogenesis, and hypoxia sensing. However, the role of NDRG1 in the ovary remains poorly understood. Therefore, we investigated NDRG1 expression and the role of NDRG1 in the human ovary. Methods Follicular fluid (FF) and luteinized granulosa cells were collected from follicles during oocyte retrieval. KGN cells were cultured with cobalt chloride (CoCl2, a hypoxia-mimicking agent) and/or echinomycin. mRNA, protein levels and secretion, and localization were assessed by real-time PCR, Western blotting, ELISA, and immunohistochemical analysis, respectively. KGN cells were also transfected with NDRG1 siRNA for 72 h. Results NDRG1 protein was expressed in luteinized granulosa cells. NDRG1 concentration was positively correlated with vascular endothelial growth factor (VEGF) and progesterone concentrations in FF. CoCl2-induced hypoxic stress significantly increased NDRG1 and VEGF mRNA and protein and hypoxia-inducible factor-1α expression compared with those in the controls. The CoCl2-induced overexpression of NDRG1 and VEGF was suppressed by echinomycin. Transfection with NDRG1 siRNA significantly suppressed the release of progesterone in the culture medium. Conclusions These results indicate that ovarian NDRG1 may play important roles in follicular development, especially in the early luteinization of pre-ovulatory follicles.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hiroaki Tsubokura
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Mitsuaki Ishida
- Department of Pathology and Laboratory MedicineKansai Medical UniversityOsakaJapan
| | - Yoshiko Hashimoto
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Aya Yoshida
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Yoji Hisamatsu
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | | | - Hiromi Murata
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hidetaka Okada
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| |
Collapse
|
8
|
Macsek P, Skoda J, Krchniakova M, Neradil J, Veselska R. Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma. Int J Mol Sci 2021; 23:ijms23010376. [PMID: 35008802 PMCID: PMC8745636 DOI: 10.3390/ijms23010376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023] Open
Abstract
Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Peter Macsek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-6003
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| |
Collapse
|
9
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
10
|
Bhattacharya A, Santhoshkumar A, Kurahara H, Harihar S. Metastasis Suppressor Genes in Pancreatic Cancer: An Update. Pancreas 2021; 50:923-932. [PMID: 34643607 DOI: 10.1097/mpa.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), has for long remained a deadly form of cancer characterized by high mortality rates resulting from metastasis to multiple organs. Several factors, including the late manifestation of the disease, partly amplified by lack of efficient screening methods, have hampered the drive to design an effective therapeutic strategy to treat this deadly cancer. Understanding the biology of PDAC progression and identifying critical genes regulating these processes are essential to overcome the barriers toward effective treatment. Metastasis suppressor genes have been shown to inhibit multiple steps in the metastatic cascade without affecting primary tumor formation and are considered to hold promise for treating metastatic cancers. In this review, we catalog the bona fide metastasis suppressor genes reported in PDAC and discuss their known mechanism of action.
Collapse
Affiliation(s)
- Arnav Bhattacharya
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anirudh Santhoshkumar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
11
|
Serebrova VN, Trifonova EA, Stepanov VA. Natural Selection as a Driver for the Genetic Component of Preeclampsia. Mol Biol 2021. [DOI: 10.1134/s0026893321020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Mustonen V, Muruganandam G, Loris R, Kursula P, Ruskamo S. Crystal and solution structure of NDRG1, a membrane-binding protein linked to myelination and tumour suppression. FEBS J 2021; 288:3507-3529. [PMID: 33305529 DOI: 10.1111/febs.15660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a tumour suppressor involved in vesicular trafficking and stress response. NDRG1 participates in peripheral nerve myelination, and mutations in the NDRG1 gene lead to Charcot-Marie-Tooth neuropathy. The 43-kDa NDRG1 is considered as an inactive member of the α/β hydrolase superfamily. In addition to a central α/β hydrolase fold domain, NDRG1 consists of a short N terminus and a C-terminal region with three 10-residue repeats. We determined the crystal structure of the α/β hydrolase domain of human NDRG1 and characterised the structure and dynamics of full-length NDRG1. The structure of the α/β hydrolase domain resembles the canonical α/β hydrolase fold with a central β sheet surrounded by α helices. Small-angle X-ray scattering and CD spectroscopy indicated a variable conformation for the N- and C-terminal regions. NDRG1 binds to various types of lipid vesicles, and the conformation of the C-terminal region is modulated upon lipid interaction. Intriguingly, NDRG1 interacts with metal ions, such as nickel, but is prone to aggregation in their presence. Our results uncover the structural and dynamic features of NDRG1, as well as elucidate its interactions with metals and lipids, and encourage studies to identify a putative hydrolase activity of NDRG1. DATABASES: The coordinates and structure factors for the crystal structure of human NDRG1 were deposited to PDB (PDB ID: 6ZMM).
Collapse
Affiliation(s)
- Venla Mustonen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
13
|
Morishita K, Nakahata S, Ichikawa T. Pathophysiological significance of N-myc downstream-regulated gene 2 in cancer development through protein phosphatase 2A phosphorylation regulation. Cancer Sci 2021; 112:22-30. [PMID: 33128318 PMCID: PMC7780046 DOI: 10.1111/cas.14716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.
Collapse
Affiliation(s)
| | - Shingo Nakahata
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Tomonaga Ichikawa
- Medical SciencesFaculty of MedicineUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
14
|
Takarada-Iemata M. Roles of N-myc downstream-regulated gene 2 in the central nervous system: molecular basis and relevance to pathophysiology. Anat Sci Int 2020; 96:1-12. [PMID: 33174183 DOI: 10.1007/s12565-020-00587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a member of the NDRG family, whose members have multiple functions in cell proliferation, differentiation, and stress responses. NDRG2 is widely distributed in the central nervous system and is uniquely expressed by astrocytes; however, its role in brain function remains elusive. The clinical relevance of NDRG2 and the molecular mechanisms in which it participates have been reported by studies using cultured cells and specimens of patients with neurological disorders. In recent years, genetic tools, including several lines of Ndrg2-knockout mice and virus-mediated gene transfer, have improved understanding of the roles of NDRG2 in vivo. This review aims to provide an update of recent growing in vivo evidence that NDRG2 is involved in brain function, focusing on research of Ndrg2-knockout mice with neurological disorders such as brain tumors, chronic neurodegenerative diseases, and acute brain insults including brain injury and cerebral stroke. These studies demonstrate that NDRG2 plays diverse roles in the regulation of astrocyte reactivity, blood-brain barrier integrity, and glutamate excitotoxicity. Further elucidation of the roles of NDRG2 and their molecular basis may provide novel therapeutic approaches for various neurological disorders.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
15
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
16
|
Li X, Wu X, Luo P, Xiong L. Astrocyte-specific NDRG2 gene: functions in the brain and neurological diseases. Cell Mol Life Sci 2020; 77:2461-2472. [PMID: 31834421 PMCID: PMC11104915 DOI: 10.1007/s00018-019-03406-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023]
Abstract
In recent years, the roles of astrocytes of the central nervous system in brain function and neurological disease have drawn increasing attention. As a member of the N-myc downstream-regulated gene (NDRG) family, NDRG2 is principally expressed in astrocytes of the central nervous system. NDRG2, which is involved in cell proliferation and differentiation, is commonly regarded as a tumor suppressor. In astrocytes, NDRG2 affects the regulation of apoptosis, astrogliosis, blood-brain barrier integrity, and glutamate clearance. Several preclinical studies have revealed that NDRG2 is implicated in the pathogenesis of many neurological diseases not limited to tumors (mostly glioma in the nervous system), such as stroke, neurodegeneration (Alzheimer's disease and Parkinson's disease), and psychiatric disorders (depression and attention deficit hyperactivity disorder). This review summarizes the biological functions of NDRG2 under physiological and pathological conditions, and further discusses the roles of NDRG2 during the occurrence and development of neurological diseases.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China.
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China.
| |
Collapse
|
17
|
Watari K, Shibata T, Fujita H, Shinoda A, Murakami Y, Abe H, Kawahara A, Ito H, Akiba J, Yoshida S, Kuwano M, Ono M. NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells. Commun Biol 2020; 3:107. [PMID: 32144393 PMCID: PMC7060337 DOI: 10.1038/s42003-020-0829-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Many diseases, including cancer, have been associated with impaired regulation of angiogenesis, of which vascular endothelial growth factor (VEGF)-A is a key regulator. Here, we test the contribution of N-myc downstream regulated gene 1 (NDRG1) to VEGF-A-induced angiogenesis in vascular endothelial cells (ECs). Ndrg1−/− mice exhibit impaired VEGF-A-induced angiogenesis in corneas. Tumor angiogenesis induced by cancer cells that express high levels of VEGF-A was also reduced in a mouse dorsal air sac assay. Furthermore, NDRG1 deficiency in ECs prevented angiogenic sprouting from the aorta and the activation of phospholipase Cγ1 (PLCγ1) and ERK1/2 by VEGF-A without affecting the expression and function of VEGFR2. Finally, we show that NDRG1 formed a complex with PLCγ1 through its phosphorylation sites, and the inhibition of PLCγ1 dramatically suppressed VEGF-A-induced angiogenesis in the mouse cornea, suggesting an essential role of NDRG1 in VEGF-A-induced angiogenesis through PLCγ1 signaling. Kosuke Watari et al. show that N-myc downstream-regulated gene 1 (NDRG1) stimulates new blood vessel formation that is induced by VEGF-A, using Ndrg1 knockout mice. They find that PLCγ1/ERK signaling mediates this regulation, providing mechanistic insights into how vascular endothelial cells form new vessels.
Collapse
Affiliation(s)
- Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3243, Japan
| | - Ai Shinoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Hiroshi Ito
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
18
|
Shi J, Zheng H, Yuan L. High NDRG3 expression facilitates HCC metastasis by promoting nuclear translocation of β-catenin. BMB Rep 2020. [PMID: 31072445 PMCID: PMC6675243 DOI: 10.5483/bmbrep.2019.52.7.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NDRG1 has been reported to exert pivotal roles in tumor progression and metastasis via Wnt/β-catenin signaling pathway. However, little is known about the role of NDRG3 in hepatocarcinogenesis despite its classification in the same subfamily of NDRG1. The present study was aimed to characterize the expression pattern and understand the biological roles of NDRG3 in hepatocarcinogenesis, as a means to exploit its therapeutic potential. It was observed that NDRG3 was up-regulated in HCC tissues and higher NDRG3 expression was associated with significantly shorter overall survival. Furthermore, a lower level of NDRG3 exhibited marked positive correlation with metastasis-free survival. In vitro and in vivo experiments revealed that knock-down of NDRG3 inhibits HCC metastasis and angiogenesis. We further demonstrated that activation of WNT/β-catenin signaling and enhanced CSC-like properties were responsible for NDRG3- mediated promoting effect on HCC. In conclusion, the principal findings demonstrated that high NDRG3 expression facilitates HCC metastasis via regulating the turnover of β-catenin, as well as provides a potential therapeutic target for future therapeutic interventions.
Collapse
Affiliation(s)
- JiKui Shi
- Department of Critical Care Medicine, Jining NO.1 People's Hospital, Jining 272011, P.R. China
| | - HongZhen Zheng
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200040, P.R. China
| | - LingYan Yuan
- Department of Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200040, P.R. China
| |
Collapse
|
19
|
Structural and Biophysical Analyses of Human N-Myc Downstream-Regulated Gene 3 (NDRG3) Protein. Biomolecules 2020; 10:biom10010090. [PMID: 31935861 PMCID: PMC7022630 DOI: 10.3390/biom10010090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/07/2023] Open
Abstract
The N-Myc downstream-regulated gene (NDRG) family belongs to the α/β-hydrolase fold and is known to exert various physiologic functions in cell proliferation, differentiation, and hypoxia-induced cancer metabolism. In particular, NDRG3 is closely related to proliferation and migration of prostate cancer cells, and recent studies reported its implication in lactate-triggered hypoxia responses or tumorigenesis. However, the underlying mechanism for the functions of NDRG3 remains unclear. Here, we report the crystal structure of human NDRG3 at 2.2 Å resolution, with six molecules in an asymmetric unit. While NDRG3 adopts the α/β-hydrolase fold, complete substitution of the canonical catalytic triad residues to non-reactive residues and steric hindrance around the pseudo-active site seem to disable the α/β-hydrolase activity. While NDRG3 shares a high similarity to NDRG2 in terms of amino acid sequence and structure, NDRG3 exhibited remarkable structural differences in a flexible loop corresponding to helix α6 of NDRG2 that is responsible for tumor suppression. Thus, this flexible loop region seems to play a distinct role in oncogenic progression induced by NDRG3. Collectively, our studies could provide structural and biophysical insights into the molecular characteristics of NDRG3.
Collapse
|
20
|
Ito H, Watari K, Shibata T, Miyamoto T, Murakami Y, Nakahara Y, Izumi H, Wakimoto H, Kuwano M, Abe T, Ono M. Bidirectional Regulation between NDRG1 and GSK3β Controls Tumor Growth and Is Targeted by Differentiation Inducing Factor-1 in Glioblastoma. Cancer Res 2019; 80:234-248. [PMID: 31723002 DOI: 10.1158/0008-5472.can-19-0438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
The development of potent and selective therapeutic approaches to glioblastoma (GBM), one of the most aggressive primary brain tumors, requires identification of molecular pathways that critically regulate the survival and proliferation of GBM. Previous studies have reported that deregulated expression of N-myc downstream regulated gene 1 (NDRG1) affects tumor growth and clinical outcomes of patients with various types of cancer including glioma. Here, we show that high level expression of NDRG1 in tumors significantly correlated with better prognosis of patients with GBM. Loss of NDRG1 in GBM cells upregulated GSK3β levels and promoted cell proliferation, which was reversed by selective inhibitors of GSK3β. In contrast, NDRG1 overexpression suppressed growth of GBM cells by decreasing GSK3β levels via proteasomal degradation and by suppressing AKT and S6 cell growth signaling, as well as cell-cycle signaling pathways. Conversely, GSK3β phosphorylated serine and threonine sites in the C-terminal domain of NDRG1 and limited the protein stability of NDRG1. Furthermore, treatment with differentiation inducing factor-1, a small molecule derived from Dictyostelium discoideum, enhanced NDRG1 expression, decreased GSK3β expression, and exerted marked NDRG1-dependent antitumor effects in vitro and in vivo. Taken together, this study revealed a novel molecular mechanism by which NDRG1 inhibits GBM proliferation and progression. Our study thus identifies the NDRG1/GSK3β signaling pathway as a key growth regulatory program in GBM, and suggests enhancing NDRG1 expression in GBM as a potent strategy toward the development of anti-GBM therapeutics. SIGNIFICANCE: This study identifies NDRG1 as a potent and endogenous suppressor of glioblastoma cell growth, suggesting the clinical benefits of NDRG1-targeted therapeutics against glioblastoma.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, Japan.,Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St, Mary's Hospital, Kurume, Japan
| | - Yukiko Nakahara
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, St, Mary's Hospital, Kurume, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Meng N, Yang Q, He Y, Gu WW, Gu Y, Zhen XX, Wang J, Zhang X, Sun ZG, Wang J. Decreased NDRG1 expression is associated with pregnancy loss in mice and attenuates the in vitro decidualization of endometrial stromal cells. Mol Reprod Dev 2019; 86:1210-1223. [PMID: 31339191 DOI: 10.1002/mrd.23238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/27/2019] [Indexed: 01/20/2023]
Abstract
Embryo implantation is an essential step for a successful pregnancy, and any defect in this process can lead to a range of pregnancy pathologies. The objective of this study was to explore the role of N-myc downregulated gene 1 (NDRG1) in embryo implantation. It was found that uterine NDRG1 expression has a dynamic pattern during the estrous cycle in nonpregnant mice and that uterine NDRG1 expression was elevated during the implantation process in pregnant mice. The distinct accumulation of NDRG1 protein signals was observed in the primary decidual zone adjacent to the implanting embryo during early pregnancy. Furthermore, uterine NDRG1 expression could be induced by activated implantation or artificial decidualization in mice. Decreased uterine NDRG1 expression was associated with pregnancy loss in mice and was associated with recurrent miscarriages in humans. The in vitro decidualization of both mouse and human endometrial stromal cells (ESCs) was accompanied by increased NDRG1 expression and downregulated NDRG1 expression in ESCs effectively inhibited decidualization. Collectively, these data suggest that NDRG1 plays an important role in decidualization during the implantation process, and the abnormal expression of NDRG1 may be involved in pregnancy loss.
Collapse
Affiliation(s)
- Nan Meng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Qian Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Yaping He
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Wen-Wen Gu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Gu
- Family Planning Department, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xing-Xing Zhen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianmei Wang
- Family Planning Department, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuan Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhao-Gui Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| | - Jian Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Vaes N, Schonkeren SL, Brosens E, Koch A, McCann CJ, Thapar N, Hofstra RM, van Engeland M, Melotte V. A combined literature and in silico analysis enlightens the role of the NDRG family in the gut. Biochim Biophys Acta Gen Subj 2018; 1862:2140-2151. [DOI: 10.1016/j.bbagen.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
|
23
|
Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia. Oncotarget 2018; 7:57442-57451. [PMID: 27447861 PMCID: PMC5303000 DOI: 10.18632/oncotarget.10684] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming toward aerobic glycolysis and lactate fermentation supplies cancer cells with intermediate metabolites, which are used as macromolecule precursors. The oncogene MYC contributes to such aerobic metabolism by activating the expression of numerous genes essential for glycolysis and mitochondrial biogenesis. However, to survive and evolve in a hypoxic tumor milieu, cancer cells must revise MYC-driven metabolism because the mitochondrial respiratory chain provides free electrons to generate oxygen free radicals with inefficient production of ATP due to oxygen depletion. Instead, hypoxia-inducible transcription factor hypoxia-inducible factor 1 (HIF-1) takes over the role of MYC in glycolysis, but suppresses mitochondrial biogenesis and activity to protect cells from such threats. Recently, the N-MYC downstream-regulated gene (NDRG) family has received attention as potential biomarkers of cancer prognosis. NDRGs are repressed MYC-dependently in various cancers, but induced under hypoxia because HIF-1 directly activates their promoters and indirectly de-represses them by antagonizing MYC. In this review, we summarize the current understanding of the reprogramming of cancer metabolism via the counterbalance between MYC and HIF-1, and discuss the proven and putative roles of the NDRG family in adjusting cancer metabolism according to the ambient oxygen level.
Collapse
|
24
|
Ambrosio S, Amente S, Saccà CD, Capasso M, Calogero RA, Lania L, Majello B. LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene. Oncotarget 2018; 8:3854-3869. [PMID: 27894074 PMCID: PMC5354800 DOI: 10.18632/oncotarget.12924] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) with MYCN amplification is a highly aggressive and metastatic tumor in children. The high recurrence rate and resistance of NB cells to drugs urgently demands a better therapy for this disease. We have recently found that MYCN interacts with the lysine-specific demethylase 1 (LSD1), a histone modifier that participates in key aspects of gene transcription. In cancer cells, LSD1 contributes to the genetic reprogramming that underlies to Epithelial-Mesenchymal Transition (EMT) and tumor metastasis. Here, we show that LSD1 affects motility and invasiveness of NB cells by modulating the transcription of the metastasis suppressor NDRG1 (N-Myc Downstream-Regulated Gene 1). At mechanistic level, we found that LSD1 co-localizes with MYCN at the promoter region of the NDRG1 gene and inhibits its expression. Pharmacological inhibition of LSD1 relieves repression of NDRG1 by MYCN and affects motility and invasiveness of NB cells. These effects were reversed by overexpressing NDRG1. In NB tissues, high levels of LSD1 correlate with low levels of NDRG1 and reduced patients survival. Collectively, our findings elucidate a mechanism of how MYCN/LSD1 control motility and invasiveness of NB cells through transcription regulation of NDRG1 expression and suggest that pharmacological targeting of LSD1 represents a valuable approach for NB therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy
| | - Carmen D Saccà
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
25
|
Larson NB, McDonnell SK, Fogarty Z, Larson MC, Cheville J, Riska S, Baheti S, Weber AM, Nair AA, Wang L, O’Brien D, Davila J, Schaid DJ, Thibodeau SN. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci. Oncotarget 2017; 8:85896-85908. [PMID: 29156765 PMCID: PMC5689655 DOI: 10.18632/oncotarget.20717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/29/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis-acting associations due to study limitations. While trans-eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans-eQTL associations are mediated by cis-regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis-mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans-eQTL associations that were significantly mediated by cis-regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B, and target trans-genes with known HNF response elements (MIA2, SRC, SEMA6A, KIF12). We additionally identified evidence of cis-acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1. The majority of these cis-mediator relationships demonstrated trans-eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.
Collapse
Affiliation(s)
- Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Shannon K. McDonnell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zach Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - John Cheville
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shaun Riska
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Asha A. Nair
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel O’Brien
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaime Davila
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel J. Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Nataf S, Barritault M, Pays L. A Unique TGFB1-Driven Genomic Program Links Astrocytosis, Low-Grade Inflammation and Partial Demyelination in Spinal Cord Periplaques from Progressive Multiple Sclerosis Patients. Int J Mol Sci 2017; 18:ijms18102097. [PMID: 28981455 PMCID: PMC5666779 DOI: 10.3390/ijms18102097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023] Open
Abstract
We previously reported that, in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses did not allow providing a comprehensive view of molecular events in astrocytes vs. oligodendrocytes. Here, we re-assessed our transcriptomic data and performed co-expression analyses to characterize astrocyte vs. oligodendrocyte molecular signatures in periplaques. We identified an astrocytosis-related co-expression module whose central hub was the astrocyte gene Cx43/GJA1 (connexin-43, also named gap junction protein α-1). Such a module comprised GFAP (glial fibrillary acidic protein) and a unique set of transcripts forming a TGFB/SMAD1/SMAD2 (transforming growth factor β/SMAD family member 1/SMAD family member 2) genomic signature. Partial demyelination was characterized by a co-expression network whose central hub was the oligodendrocyte gene NDRG1 (N-myc downstream regulated 1), a gene previously shown to be specifically silenced in the normal-appearing white matter (NAWM) of MS patients. Surprisingly, besides myelin genes, the NDRG1 co-expression module comprised a highly significant number of translation/elongation-related genes. To identify a putative cause of NDRG1 downregulation in periplaques, we then sought to identify the cytokine/chemokine genes whose mRNA levels inversely correlated with those of NDRG1. Following this approach, we found five candidate immune-related genes whose upregulation associated with NDRG1 downregulation: TGFB1(transforming growth factor β 1), PDGFC (platelet derived growth factor C), IL17D (interleukin 17D), IL33 (interleukin 33), and IL12A (interleukin 12A). From these results, we propose that, in the spinal cord periplaques of progressive MS patients, TGFB1 may limit acute inflammation but concurrently induce astrocytosis and an alteration of the translation/elongation of myelin genes in oligodendrocytes.
Collapse
Affiliation(s)
- Serge Nataf
- Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, F-69600 Oullins, France.
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003 Lyon, France.
| | - Marc Barritault
- Univ Lyon, Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, INSERMU1052, CNRS UMR5286, University Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France.
- Service d'Anatomie Pathologique, Hospices Civils de Lyon, Groupement Hospitalier Est, 59 boulevard Pinel, 69677 Bron, France.
| | - Laurent Pays
- Univ Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Merieux Medical School, F-69600 Oullins, France.
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003 Lyon, France.
| |
Collapse
|
27
|
Ndrg1b and fam49ab modulate the PTEN pathway to control T-cell lymphopoiesis in the zebrafish. Blood 2016; 128:3052-3060. [PMID: 27827822 DOI: 10.1182/blood-2016-09-742502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
During hematopoiesis, the balance between proliferation, differentiation, and apoptosis is tightly regulated in order to maintain homeostasis. Failure in these processes can ultimately lead to uncontrolled proliferation and leukemia. Phosphatase and tensin homolog (PTEN) is one of the molecular pathways involved in this balance. By opposing PI3-kinases, PTEN inhibits proliferation and promotes differentiation and is thus considered a tumor suppressor. Indeed, PTEN is frequently mutated in many cancers, including leukemias. Loss of PTEN often leads to lymphoid cancers. However, little is known about the molecular events that regulate PTEN signaling during lymphopoiesis. In this study, we used zebrafish to address this. We report that N-myc downstream-regulated gene 1b (ndrg1b) rescues lymphoid differentiation after PTEN inhibition. We also show that a previously uncharacterized gene, fam49ab, inhibits T-cell differentiation, a phenotype that can be rescued by ndrg1b We propose that ndrg1b and fam49ab are 2 new modulators of PTEN signaling that control lymphoid differentiation in the zebrafish thymus.
Collapse
|
28
|
Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 2016; 7:209-23. [PMID: 26506239 PMCID: PMC4807993 DOI: 10.18632/oncotarget.6228] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor and cell stress-related gene. NDRG2 is associated with tumor incidence, progression, and metastasis. NDRG2 regulates tumor-associated genes and is regulated by multiple conditions, treatments, and protein/RNA entities, including hyperthermia, trichostatin A and 5-aza-2'-deoxycytidine, which are promising potential cancer therapeutics. In this review, we discuss the expression as well as the clinical and pathological significance of NDRG2 in cancer. The pathological processes and molecular pathways regulated by NDRG2 are also summarized. Moreover, mechanisms for increasing NDRG2 expression in tumors and the potential directions of future NDRG2 research are discussed. The information reviewed here should assist in experimental design and increase the potential of NDRG2 as a therapeutic target for cancer.
Collapse
|
29
|
Ling ZQ, Ge MH, Lu XX, Han J, Wu YC, Liu X, Zhu X, Hong LL. Ndrg2 promoter hypermethylation triggered by helicobacter pylori infection correlates with poor patients survival in human gastric carcinoma. Oncotarget 2016; 6:8210-25. [PMID: 25823664 PMCID: PMC4480746 DOI: 10.18632/oncotarget.3601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
N-myc downstream regulated gene 2 (Ndrg2) is a candidate suppressor of cancer metastasis. We found that Ndrg2 promoter was frequently hypermethylated in gastric cancer cell lines and in 292 gastric tumor tissues. This resulted in down-regulation of Ndrg2 mRNA and protein. Ndrg2 promoter methylation was associated with H. pylori infection and worse prognosis of gastric cancer patients, which is an independent prognostic factor for the disease-free survival (DFS). We found that H. pylori silenced Ndrg2 by activating the NF-κB pathway and up-regulating DNMT3b, promoting gastric cancer progression. These findings uncover a previously unrecognized role for H. pylori infection in gastric cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Ming-Hua Ge
- Department of Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiao-Xiao Lu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jin Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Lian-Lian Hong
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| |
Collapse
|
30
|
Kotipatruni RP, Ren X, Thotala D, Jaboin JJ. NDRG4 is a novel oncogenic protein and p53 associated regulator of apoptosis in malignant meningioma cells. Oncotarget 2016; 6:17594-604. [PMID: 26053091 PMCID: PMC4627331 DOI: 10.18632/oncotarget.4009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022] Open
Abstract
Aggressive meningiomas exhibit high levels of recurrence, morbidity and mortality. When surgical and radiation options are exhausted, there is need for novel molecularly-targeted therapies. We have recently identified NDRG4 overexpression in aggressive meningiomas. NDRG4 is a member of the N-Myc Downstream Regulated Gene (NDRG) family of the alpha/beta hydrolase superfamily. We have demonstrated that NDRG4 downregulation results in decreased cell proliferation, migration and invasion. In follow up to our prior studies; here we demonstrate that the predominant form of cell death following NDRG4 silencing is apoptosis, utilizing Annexin-V flow cytometry assay. We show that apoptosis caused by p53 upregulation, phosphorylation at Ser15, BAX activation, Bcl-2 and BcL-xL downregulation, mitochondrial cytochrome c release and execution of caspases following NDRG4 depletion. Sub-cellular distribution of BAX and cytochrome c indicated mitochondrial-mediated apoptosis. In addition, we carried out the fluorescence cytochemical analysis to confirm mitochondrial-mediated apoptosis by changes in mitochondrial membrane potential (Ψm), using JC-1 dye. Immunoprecipitation and immunofluorescence confirmed binding of NDRG4 to p53. In addition, we demonstrate that apoptosis is mitochondrial and p53 dependent. The proapoptotic effect of p53 was verified by the results in which a small molecule compound PFT-α, an inhibitor of p53 phosphorylation, is greatly protected against targeting NDRG4 induced apoptosis. These findings bring novel insight to the roles of NDRG4 in meningioma progression. A better understanding of this pathway and its role in meningioma carcinogenesis and cell biology is promising for the development of novel therapeutic targets for the management of aggressive meningiomas.
Collapse
Affiliation(s)
- Rama P Kotipatruni
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Xuan Ren
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Jerry J Jaboin
- Department of Radiation Oncology, Cancer Biology Division, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA.,Siteman Cancer Center, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Wu F, Rom WN, Koshiji M, Mo Y, Hosomi Y, Tchou-Wong KM. Role of GLI1 and NDRG1 in Increased Resistance to Apoptosis Induction. J Environ Pathol Toxicol Oncol 2015; 34:213-25. [PMID: 26349604 DOI: 10.1615/jenvironpatholtoxicoloncol.2015013472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We examined the effects of GLI1 expression in PW mouse embryo fibroblasts and H441 lung carcinoma cells. Ectopic expression of GLI1 in PW cells induced anchorage-independent growth and increased resistance to staurosporine-induced apoptosis, and overexpression of GLI1 in H441 cells caused resistance to apoptosis induced by staurosporine and etoposide. GLI1 expression in both H441 and PW cells was associated with increased expression of NDRG1, a gene known to be downregulated by the MYC family of proteins, indicating that upregulation of NDRG1 by GLI1 is not cell-type specific. Consistent with suppression of NDRG1 by c-MYC and N-MYC, increased NDRG1 expression correlated with decreased expression of c-MYC and N-MYC in GLI1-expressing H441 and GLI1-expressing PW cells, respectively. Downregulation of GLI1 expression in A549 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis, and downregulation of NDRG1 expression in H441 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis. Of clinical significance, inhibition of GLI1 and NDRG1 expression may increase sensitivity of cancer cells to chemotherapeutic drugs. Strategies that aim to inhibit GLI1 function and NDRG1 expression may be useful for targeted therapy of cancers induced by the SHH-GLI signaling pathway.
Collapse
Affiliation(s)
- Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - William N Rom
- Division of Pulmonary and Critical Care Medicine, and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Minori Koshiji
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York; Clinical Oncology, Merck & Co., Inc., Whitehouse Station, New Jersey
| | - Yiqun Mo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York; Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky
| | - Yukio Hosomi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York; Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kam-Meng Tchou-Wong
- Division of Pulmonary and Critical Care Medicine, and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
32
|
Zhang D, Jia J, Zhao G, Yue M, Yang H, Wang J. NDRG1 promotes the multidrug resistance of neuroblastoma cells with upregulated expression of drug resistant proteins. Biomed Pharmacother 2015; 76:46-51. [PMID: 26653549 DOI: 10.1016/j.biopha.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Resistance to chemotherapeutic drugs and recurrence are two major causes of poor prognosis in many tumors including neuroblastoma. This study aimed to investigate the effect of the elevated intracellular NDRG1 expression on drug resistance of human neuroblastoma cells to chemotherapy, for exploring novel approaches for biotherapy of neuroblastoma. METHODS Human neuroblastoma KP-N-Ns cell lines were transfected with the lentivirus vector containing human NDRG1 cDNA, with empty vector-transfected or blank cells as controls. Transfection status was confirmed under fluorescence microscope, while PCR assay and western blot analysis were performed to determine the expression changes. MTT and TUNEL assays were used to detect the resistance of the cells to anticancer drugs, including vincristine, cyclophosphamide and so on. Additionally, the expression of drug resistant proteins was detected. RESULTS Stable lentiviral transfection cell line was successfully established with significantly upregulated NDRG1 expression. MTT assay revealed greater cell growth under NDRG1 overexpression with drugs stimulation, as compared to controls. TUNEL assay also showed less apoptosis of NDRG1 overexpressing cells than those of controls when exposed to these drugs, suggesting the increasing drug resistance through NDRG1 overexpression. Besides, the expression of MDR, LRP-1 and MRP-1 was also increased in NDRG1 overexpressing cells, implying NDRG1-mediated pathways in multidrug resistance of neuroblastoma. CONCLUSION NDRG1 could increase the resistance of neuroblastoma cells to chemotherapeutic drugs, with its positive regulation on drug resistant proteins. This study provided new insights for exploring the mechanism of the resistance to chemotherapeutic drugs and also novel approach for biotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jia Jia
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ge Zhao
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Min Yue
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Heying Yang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
33
|
Cho Y, Yoon JH, Yoo JJ, Lee M, Lee DH, Cho EJ, Lee JH, Yu SJ, Kim YJ, Kim CY. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43. Acta Pharm Sin B 2015; 5:544-53. [PMID: 26713269 PMCID: PMC4675821 DOI: 10.1016/j.apsb.2015.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023] Open
Abstract
Fucoidan is a traditional Chinese medicine suggested to possess anti-tumor effects. In this study the anti-metastatic effects of fucoidan were investigated in vitro in human hepatocellular carcinoma (HCC) cells (Huh-7 and SNU-761) under normoxic and hypoxic conditions and in vivo using a distant liver metastasis model involving injection of MH134 cells into spleen via the portal vein. Its ability to protect hepatocytes against bile acid (BA)-induced apoptosis was investigated in primary hepatocytes. Fucoidan was found to suppress the invasion of HCC cells through up-regulation of p42/44 MAPK-dependent NDRG-1/CAP43 and partly, under normoxic conditions, through up-regulation of p42/44 MAPK-dependent VMP-1 expression. It also significantly decreased liver metastasis in vivo. As regards its hepatoprotective effect, fucoidan decreased BA-induced hepatocyte apoptosis as shown by the attenuation of caspase-8, and -7 cleavages and suppression of the mobilization of caspase-8 and Fas associated death domain (FADD) into the death-inducing signaling complex. In summary, fucoidan displays inhibitory effects on proliferation of HCC cells and protective effects on hepatocytes. The results suggest fucoidan is a potent suppressor of tumor invasion with hepatoprotective effects.
Collapse
Key Words
- BA, bile acid
- CXCL, chemokine ligand
- Cultured hepatocyte
- DISC, death-inducing signaling complex
- DMEM, Dulbecco׳s modified Eagle׳s medium
- DNA, deoxyribonucleic acid
- ELISA, enzyme-linked immunosorbent assay
- FADD, Fas associated death domain
- FBS, fetal bovine serum
- FCS, fetal calf serum
- Fucoidan
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GP, glypican
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- Hepatoprotective
- Hypoxia
- IHC, immunohistochemistry
- Invasion
- JNK, c-Jun NH2-terminal kinase
- MAPK, mitogen-activated protein kinase
- MTS, 3,4-(5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt
- NDRG, N-myc downstream-regulated gene
- NDRG-1/CAP43
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- VMP, vacuole membrane protein
- VMP-1
- WME, William's medium E
- cDNA, complementary DNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
| | - Jung-Hwan Yoon
- Corresponding author. Tel.: +82 2 2072 2228; fax: +82 2 743 6701.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep 2015; 12:1050-8. [PMID: 25777142 PMCID: PMC4438970 DOI: 10.3892/mmr.2015.3492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) was previously shown to exhibit low expression in glioma tissue as compared with that in normal brain tissue; however, the role of NDRG1 in human glioma cells has remained to be elucidated. The present study used the U87 MG and SHG-44 human glioma cell lines as well as the normal human astrocyte cell line 1800, which are known to have differential NDRG1 expression. Small interfering (si)RNA targeting NDRG1, and NDRG1 overexpression vectors were transfected into the SHG-44 and U87 MG glioma cells, respectively. Cell proliferation, invasion, apoptosis and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model was used to investigate the effects of NDRG1 on the growth of glioma cells in vivo. Overexpression of NDRG1 was shown to inhibit cell proliferation and invasion, and induce apoptosis in the U87 MG glioma cells, whereas NDRG1 downregulation increased proliferation, suppressed apoptosis and promoted invasion of the SHG-44 glioma cells. In addition, in the subcutaneous tumor mouse model, overexpression of NDRG1 in U-87 MG cells suppressed tumorigenicity in vivo. The findings of the present study indicated that NDRG1 is required for the inhibition of gliomagenesis; therefore, targeting NDRG1 and its downstream targets may represent novel therapies for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
35
|
Endo T, Nakamura J, Sato Y, Asada M, Yamada R, Takase M, Takaori K, Oguchi A, Iguchi T, Higashi AY, Ohbayashi T, Nakamura T, Muso E, Kimura T, Yanagita M. Exploring the origin and limitations of kidney regeneration. J Pathol 2015; 236:251-63. [PMID: 25664690 DOI: 10.1002/path.4514] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/12/2015] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Epidemiological findings indicate that acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD), although the molecular mechanism remains unclear. Genetic fate mapping demonstrated that nephrons, functional units in the kidney, are repaired by surviving nephrons after AKI. However, the cell population that repairs damaged nephrons and their repair capacity limitations remain controversial. To answer these questions, we generated a new transgenic mouse strain in which mature proximal tubules, the segment predominantly damaged during AKI, could be genetically labelled at desired time points. Using this strain, massive proliferation of mature proximal tubules is observed during repair, with no dilution of the genetic label after the repair process, demonstrating that proximal tubules are repaired mainly by their own proliferation. Furthermore, acute tubular injury caused significant shortening of proximal tubules associated with interstitial fibrosis, suggesting that proximal tubules have a limited capacity to repair. Understanding the mechanism of this limitation might clarify the mechanism of the AKI-to-CKD continuum.
Collapse
Affiliation(s)
- Tomomi Endo
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Nephrology and Dialysis, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Jin Nakamura
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misako Asada
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Yamada
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Takase
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Development II, Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Koji Takaori
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taku Iguchi
- Development II, Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan.,TMK Project, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsuko Y Higashi
- Department of Pharmacology, Kansai Medical University, Osaka, Japan
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Tottori, Japan
| | | | - Eri Muso
- Department of Nephrology and Dialysis, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
WNT-1 inducible signaling pathway protein-1 enhances growth and tumorigenesis in human breast cancer. Sci Rep 2015; 5:8686. [PMID: 25732125 PMCID: PMC4346832 DOI: 10.1038/srep08686] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
WNT1 inducible signaling pathway protein 1 (WISP1) plays a key role in many cellular functions in a highly tissue-specific manner; however the role of WISP1 in breast cancer is still poorly understood. Here, we demonstrate that WISP1 acts as an oncogene in human breast cancer. We demonstrated that human breast cancer tissues had higher WISP1 mRNA expression than normal breast tissues and that treatment of recombinant WISP1 enhanced breast cancer cell proliferation. Further, ectopic expression of WISP1 increased the growth of breast cancer cells in vitro and in vivo. WISP1 transfection also induced epithelial-mesenchymal-transition (EMT) in MCF-7 cells, leading to higher migration and invasion. During this EMT-inducing process, E-cadherin was repressed and N-cadherin, snail, and β-catenin were upregulated. Filamentous actin (F-actin) remodeling and polarization were also observed after WISP1 transfection into MCF-7 cells. Moreover, forced overexpression of WISP1 blocked the expression of NDRG1, a breast cancer tumor suppressor gene. Our study provides novel evidence that WISP1-modulated NDRG1 gene expression is dependent on a DNA fragment (-128 to +46) located within the human NDRG1 promoter. Thus, we concluded that WISP1 is a human breast cancer oncogene and is a potential therapeutic target.
Collapse
|
37
|
Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, Garcia GG. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 2015; 156:565-75. [PMID: 25456069 PMCID: PMC4298324 DOI: 10.1210/en.2014-1690] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The involvement of mammalian target of rapamycin (mTOR) in lifespan control in invertebrates, calorie-restricted rodents, and extension of mouse lifespan by rapamycin have prompted speculation that diminished mTOR function may contribute to mammalian longevity in several settings. We show here that mTOR complex-1 (mTORC1) activity is indeed lower in liver, muscle, heart, and kidney tissue of Snell dwarf and global GH receptor (GHR) gene-disrupted mice (GHR-/-), consistent with previous studies. Surprisingly, activity of mTORC2 is higher in fasted Snell and GHR-/- than in littermate controls in all 4 tissues tested. Resupply of food enhanced mTORC1 activity in both controls and long-lived mutant mice but diminished mTORC2 activity only in the long-lived mice. Mice in which GHR has been disrupted only in the liver do not show extended lifespan and also fail to show the decline in mTORC1 and increase in mTORC2 seen in mice with global loss of GHR. The data suggest that the antiaging effects in the Snell dwarf and GHR-/- mice are accompanied by both a decline in mTORC1 in multiple organs and an increase in fasting levels of mTORC2. Neither the lifespan nor mTOR effects appear to be mediated by direct GH effects on liver or by the decline in plasma IGF-I, a shared trait in both global and liver-specific GHR-/- mice. Our data suggest that a more complex pattern of hormonal effects and intertissue interactions may be responsible for regulating both lifespan and mTORC2 function in these mouse models of delayed aging.
Collapse
Affiliation(s)
- Graham Dominick
- Department of Molecular, Cellular, and Developmental Biology (G.D.), University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109; Edison Biotechnology Institute (D.E.B., E.O.L., J.J.K.), Ohio University, Athens, Ohio 45701; Department of Pathology (X.L., R.A.M., G.G.G.), University of Michigan School of Medicine Ann Arbor, Michigan 48109; and University of Michigan Geriatrics Center (R.A.M.), Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang CC, Chung A, Ku CY, Brill LM, Williams R, Wolf DA. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res 2014; 3:115. [PMID: 25177484 PMCID: PMC4141641 DOI: 10.12688/f1000research.3818.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
Abstract
NKX3.1 is a homeobox transcription factor whose function as a prostate tumor suppressor remains insufficiently understood because neither the transcriptional program governed by NKX3.1, nor its interacting proteins have been fully revealed. Using affinity purification and mass spectrometry, we have established an extensive NKX3.1 interactome which contains the DNA repair proteins Ku70, Ku80, and PARP, thus providing a molecular underpinning to previous reports implicating NKX3.1 in DNA repair. Transcriptomic profiling of NKX3.1-negative prostate epithelial cells acutely expressing NKX3.1 revealed a rapid and complex response that is a near mirror image of the gene expression signature of human prostatic intraepithelial neoplasia (PIN). Pathway and network analyses suggested that NKX3.1 actuates a cellular reprogramming toward luminal cell differentiation characterized by suppression of pro-oncogenic c-MYC and interferon-STAT signaling and activation of tumor suppressor pathways. Consistently, ectopic expression of NKX3.1 conferred a growth arrest depending on TNFα and JNK signaling. We propose that the tumor suppressor function of NKX3.1 entails a transcriptional program that maintains the differentiation state of secretory luminal cells and that disruption of NKX3.1 contributes to prostate tumorigenesis by permitting luminal cell de-differentiation potentially augmented by defects in DNA repair.
Collapse
Affiliation(s)
- Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alicia Chung
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Chia-Yu Ku
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Roy Williams
- Informatics and Data Management Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; San Diego Center for Systems Biology, La Jolla, CA 92093-0375, USA
| |
Collapse
|
39
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
40
|
Ma M, Zhao K, Wu W, Sun R, Fei J. Dynamic expression of N-myc in mouse embryonic development using an enhanced green fluorescent protein reporter gene in the N-myc locus. Dev Growth Differ 2014; 56:152-60. [PMID: 24397388 DOI: 10.1111/dgd.12115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 12/20/2022]
Abstract
N-myc belongs to the Myc oncogene family and plays an essential role in mammalian embryonic development. The expression of N-myc is dynamically regulated during embryonic development; however, its expression pattern has not been well characterized due to the lack of a suitable animal model. In this paper, a genetically modified mouse model was generated in which the enhanced green fluorescent protein (EGFP) coding sequence was inserted into the N-myc locus, so that endogenous N-myc expression could be traced by the signal of EGFP. The EGFP signal in the transgenic mouse was confirmed to be consistent with the expression pattern of endogenous N-myc by fluorescence microscopy and immunohistochemical staining. Furthermore, the spatial and temporal expression of EGFP was observed in the central and peripheral nervous system, heart, lung and kidney, given the known indispensable role of N-myc in their formation. EGFP was also strongly detected in the liver, paranephros and the epithelium of the intestine. The EGFP signal can be used to trace N-myc expression in this transgenic mouse model. N-myc expression was observed in specific locations and cell lineages, and dynamically changed during embryonic development. The changing N-myc expression pattern seen in mouse embryonic development and the animal model described in this paper provide important insights and a new tool to research N-myc function.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science and Technology, Tongji University, 200092, China
| | | | | | | | | |
Collapse
|
41
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
42
|
Abstract
The majority of human cancers harbour mutations promoting activation of the Akt protein kinase, and Akt inhibitors are being evaluated in clinical trials. An important question concerns the understanding of the innate mechanisms that confer resistance of tumour cells to Akt inhibitors. SGK (serum- and glucocorticoid-regulated kinase) is closely related to Akt and controlled by identical upstream regulators {PI3K (phosphoinositide 3-kinase), PDK1 (phosphoinositide-dependent kinase 1) and mTORC2 [mTOR (mammalian target of rapamycin) complex 2]}. Mutations that trigger activation of Akt would also stimulate SGK. Moreover, Akt and SGK possess analogous substrate specificities and are likely to phosphorylate overlapping substrates to promote proliferation. To investigate whether cancers possessing high SGK activity could possess innate resistance to Akt-specific inhibitors (that do not target SGK), we analysed SGK levels and sensitivity of a panel of breast cancer cells towards two distinct Akt inhibitors currently in clinical trials (AZD5363 and MK-2206). This revealed a number of Akt-inhibitor-resistant lines displaying markedly elevated SGK1 that also exhibited significant phosphorylation of the SGK1 substrate NDRG1 [N-Myc (neuroblastoma-derived Myc) downstream-regulated gene 1]. In contrast, most Akt-inhibitor-sensitive cell lines displayed low/undetectable levels of SGK1. Intriguingly, despite low SGK1 levels, several Akt-inhibitor-sensitive cells showed marked NDRG1 phosphorylation that was, unlike in the resistant cells, suppressed by Akt inhibitors. SGK1 knockdown markedly reduced proliferation of Akt-inhibitor-resistant, but not -sensitive, cells. Furthermore, treatment of Akt-inhibitor-resistant cells with an mTOR inhibitor suppressed proliferation and led to inhibition of SGK1. The results of the present study suggest that monitoring SGK1 levels as well as responses of NDRG1 phosphorylation to Akt inhibitor administration could have a use in predicting the sensitivity of tumours to compounds that target Akt. Our findings highlight the therapeutic potential that SGK inhibitors or dual Akt/SGK inhibitors might have for treatment of cancers displaying elevated SGK activity.
Collapse
|
43
|
Bae DH, Jansson PJ, Huang ML, Kovacevic Z, Kalinowski D, Lee CS, Sahni S, Richardson DR. The role of NDRG1 in the pathology and potential treatment of human cancers. J Clin Pathol 2013; 66:911-7. [PMID: 23750037 DOI: 10.1136/jclinpath-2013-201692] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has been well characterised to act as a metastatic suppressor in a number of human cancers. It has also been implicated to have a significant function in a number of physiological processes such as cellular differentiation and cell cycle. In this review, we discuss the role of NDRG1 in cancer pathology. NDRG1 was observed to be downregulated in the majority of cancers. Moreover, the expression of NDRG1 was found to be significantly lower in neoplastic tissues as compared with normal tissues. The most important function of NDRG1 in inhibiting tumour progression is associated with its ability to suppress metastasis. However, it has also been shown to have important effects on other stages of cancer progression (primary tumour growth and angiogenesis). Recently, novel iron chelators with selective antitumour activity (ie, Dp44mT, DpC) were shown to upregulate NDRG1 in cancer cells. Moreover, Dp44mT showed its antimetastatic potential only in cells expressing NDRG1, making this protein an important therapeutic target for cancer chemotherapy. This observation has led to increased interest in the examination of these novel anticancer agents.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, , Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang Q, Li LH, Gao GD, Wang G, Qu L, Li JG, Wang CM. HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol Biol Rep 2013; 40:3723-9. [DOI: 10.1007/s11033-012-2448-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/18/2012] [Indexed: 01/03/2023]
|
45
|
Gherardi S, Valli E, Erriquez D, Perini G. MYCN-mediated transcriptional repression in neuroblastoma: the other side of the coin. Front Oncol 2013; 3:42. [PMID: 23482921 PMCID: PMC3593680 DOI: 10.3389/fonc.2013.00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 01/02/2023] Open
Abstract
Neuroblastoma is the most common extra cranial solid tumor in childhood and the most frequently diagnosed neoplasm during the infancy. MYCN amplification and overexpression occur in about 25% of total neuroblastoma cases and this percentage increases at 30% in advanced stage neuroblastoma. So far, MYCN expression profile is still one of the most robust and significant prognostic markers for neuroblastoma outcome. MYCN is a transcription factor that belongs to the family of MYC oncoproteins, comprising c-MYC and MYCL genes. Deregulation of MYC oncoprotein expression is a crucial event involved in the occurrence of different types of malignant tumors. MYCN, as well as c-MYC, can heterodimerize with its partner MAX and activate the transcription of several target genes containing E-Box sites in their promoter regions. However, recent several lines of evidence have revealed that MYCN can repress at least as many genes as it activates, thus proposing a novel function of this protein in neuroblastoma biology. Whereas the mechanism by which MYCN can act as a transcriptional activator is relatively well known, very few studies has been done in the attempt to explain how MYCN can exert its transcription repression function. Here, we will review current knowledge about the mechanism of MYCN-mediated transcriptional repression and will emphasize its role as a repressor in the recruitment of a precise set of proteins to form complexes capable of down-regulating specific subsets of genes whose function is actively involved in apoptosis, cell differentiation, chemosensitivity, and cell motility. The finding that MYCN can also act as a repressor has widen our view on its role in oncogenesis and has posed the bases to search for novel therapeutic drugs that can specifically target its transcriptional repression function.
Collapse
Affiliation(s)
- Samuele Gherardi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy ; Health Sciences and Technologies - Interdepartmental Center for Industrial Research University of Bologna Bologna, Italy
| | | | | | | |
Collapse
|
46
|
Kotipatruni RP, Ferraro DJ, Ren X, Vanderwaal RP, Thotala DK, Hallahan DE, Jaboin JJ. NDRG4, the N-Myc downstream regulated gene, is important for cell survival, tumor invasion and angiogenesis in meningiomas. Integr Biol (Camb) 2013; 4:1185-97. [PMID: 22869042 DOI: 10.1039/c2ib20168b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Meningiomas are the second most common brain tumor, and 20-30% of these tumors are aggressive. The aggressive subtypes are characterized by a capacity for invasion of normal brain with frequent and destructive recurrence patterns. Effective local therapies include surgery and radiation, but there is a need for novel molecular targets to improve survival and reduce morbidity for this group or cancer patients. We have recently identified the N-Myc downstream regulated gene 4, NDRG4, protein as being overexpressed in aggressive meningioma, and in this report, demonstrate its role in cell survival, invasion/migration and angiogenesis. Downregulation of NDRG4 mRNA and protein expression in two high-grade meningioma cancer cell lines, IOMM-Lee and CH-157 MN resulted in reduction in cell survival, DNA fragmentation and G2-M cell cycle arrest. NDRG4 downregulation also decreased cellular invasion and migration, as determined by spheroid migration, linear and radial wound healing, Boyden chamber matrigel invasion, and 3D invasion assays. To determine the effect of NDRG4 depletion on angiogenesis, we studied the immortalized brain endothelial cell line, bEnd.3. We treated bEnd.3 cells with conditioned media from NDRG4-depleted IOMM-Lee and CH-157 MN cells and abrogated their ability to elicit bEnd.3 capillary-like tubes, to proliferate, and to invade. NDRG4 is not overexpressed in bEnd.3 cells and direct NDRG4 depletion had no effect on the cells. This study is significant as it is the first to demonstrate the functional role of NDRG4 in various aspects of meningioma tumor biology. NDRG4 is involved in modulating cell proliferation, invasion, migration and angiogenesis in meningioma, and may play a valuable role as a molecular target in its treatment.
Collapse
Affiliation(s)
- Rama P Kotipatruni
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Li SJ, Wang WY, Li B, Chen B, Zhang B, Wang X, Chen CS, Zhao QC, Shi H, Yao L. Expression of NDRG2 in human lung cancer and its correlation with prognosis. Med Oncol 2013; 30:421. [PMID: 23307246 PMCID: PMC3586402 DOI: 10.1007/s12032-012-0421-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
Abstract
We had reported that N-myc downstream–regulated gene (NDRG2) regulates colorectal cancer, breast cancer, clear cell renal cell carcinoma, pancreatic cancer, thyroid cancer and esophageal squamous cell proliferation, development, and apoptosis. The goal of this study was to determine the expression pattern of NDRG2 in human lung cancer and its correlation with prognosis. Immunohistochemistry, RT-PCR and western blot were used to explore the expression of NDRG2 in 185 human lung cancer patients. The correlation of NDRG2 expression with patients’ survival rate was assessed by Kaplan–Meier and Cox regression. Results showed that the expression level of NDRG2 was decreased in human lung cancer tissues, and NDRG2 was positively correlated with depth of invasion (P = 0.038), vascular invasion (P = 0.036), tumor grade (P = 0.039), and tumor size (P = 0.026). Both RT-PCR and Western blots demonstrated that NDRG2 mRNA and protein levels were lower in lung cancer compared to the adjacent normal tissue from the same individual, and NDRG2 level was negatively correlated with UICC stage. Additionally, survival time of lung cancer patients with high expression of NDRG2 was longer than those with low expression during the 5-year follow-up period (P = 0.001). Meanwhile, COX regression analysis indicated that low expression of NDRG2, ≥pT3, pM1, ≥pN1 and vascular invasion were independent, poor prognostic factors of lung cancer patients. These data showed that NDRG2 may play an important role in human lung cancer tumourigenesis, and NDRG2 might serve as a novel prognostic marker in human lung cancer.
Collapse
Affiliation(s)
- Shu-Jun Li
- State Key Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an 710032, Shanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Parman Y, Battaloğlu E. Recessively transmitted predominantly motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:847-861. [PMID: 23931818 DOI: 10.1016/b978-0-444-52902-2.00048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recessively transmitted predominantly motor neuropathies are rare and show a severe phenotype. They are frequently observed in populations with a high rate of consanguineous marriages. At least 15 genes and six loci have been found to be associated with autosomal recessive CMT (AR-CMT) and X-linked CMT (AR-CMTX) and also distal hereditary motor neuronopathy (AR-dHMN). These disorders are genetically heterogeneous but the clinical phenotype is relatively homogeneous. Distal muscle weakness and atrophy predominating in the lower extremities, diminished or absent deep tendon reflexes, distal sensory loss, and pes cavus are the main clinical features of this disorder with occasional cranial nerve involvement. Although genetic diagnosis of some of subtypes of AR-CMT are now available, rapid advances in the molecular genetics and cell biology show a great complexity. Animal models for the most common subtypes of human AR-CMT disease provide clues for understanding the pathogenesis of CMT and also help to reveal possible treatment strategies of inherited neuropathies. This chapter highlights the clinical features and the recent genetic and biological findings in these disorders based on the current classification.
Collapse
Affiliation(s)
- Yeşim Parman
- Department of Neurology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.
| | | |
Collapse
|
49
|
Charlet J, Szemes M, Malik KTA, Brown KW. MYCN is recruited to the RASSF1A promoter but is not critical for DNA hypermethylation in neuroblastoma. Mol Carcinog 2012; 53:413-20. [PMID: 23280764 DOI: 10.1002/mc.21994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023]
Abstract
Tumor suppressor genes such as RASSF1A are often epigenetically repressed by DNA hypermethylation in neuroblastoma, where the MYCN proto-oncogene is frequently amplified. MYC has been shown to associate with DNA methyltransferases, thereby inducing transcriptional repression of target genes, which suggested that MYCN might play a similar mechanistic role in the hypermethylation of tumor suppressor genes in neuroblastoma. This study tested that hypothesis by using co-immunoprecipitation and ChIP to investigate MYCN-DNA methyltransferase interactions, together with MYCN knock-down and over-expression systems to examine the effect of MYCN expression changes on gene methylation, employing both candidate gene and genome-wide assays. We show that MYCN interacts with DNA methyltransferases and is recruited to the promoter region of RASSF1A. However, using four model systems, we showed that long-term silencing of MYCN induces only a small loss of DNA methylation at the RASSF1A promoter in MYCN amplified neuroblastoma cell lines and over-expression of MYCN does not induce any DNA methylation, suggesting that MYCN is not critical for DNA hypermethylation in neuroblastoma.
Collapse
Affiliation(s)
- Jessica Charlet
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
50
|
Collard JF, Lazar C, Nowé A, Hinsenkamp M. Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 111:37-45. [PMID: 23257322 DOI: 10.1016/j.pbiomolbio.2012.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 11/26/2022]
Abstract
An acceleration of differentiation at the expense of proliferation is observed in our previous publications and in the literature after exposure of various biological models to low frequency and low-amplitude electric and electromagnetic fields. This observation is related with a significant modification of genes expression. We observed and compared over time this modification. This study use microarray data obtained on epidermis cultures harvested from human abdominoplasty exposed to ELF electric fields. This protocol is repeated with samples collected on three different healthy patients. The sampling over time allows comparison of the effect of the stimulus at a given time with the evolution of control group. After 4 days, we observed a significant difference of the genes expression between control (D4C) and stimulated (D4S) (p < 0.05). On the control between day 4 and 7, we observed another group of genes with significant difference (p < 0.05) in their expression. We identify the common genes between these two groups and we select from them those expressing no difference between stimulate at 4 days (D4S) and control after 7 days (D7C). The same analysis was performed with D4S-D4C-D12C and D7S-D7C-D12C. The lists of genes which follow this pattern show acceleration in their expressions under stimulation appearing on control at a later time. In this list, genes such as DKK1, SPRR3, NDRG4, and CHEK1 are involved in cell proliferation or differentiation. Numerous other genes are also playing a function in mitosis, cell cycle or in the DNA replication transcription and translation.
Collapse
Affiliation(s)
- J-F Collard
- Laboratoire de Recherche en Orthopédie Traumatologie (LROT), Hôpital Erasme, Université Libre de Bruxelles (ULB), 808, route de Lennik, B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|