1
|
Webb SE, Miller AL. Calcium signaling in extraembryonic domains during early teleost development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 304:369-418. [PMID: 23809440 DOI: 10.1016/b978-0-12-407696-9.00007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It is becoming recognized that the extraembryonic domains of developing vertebrates, that is, those that make no cellular contribution to the embryo proper, act as important signaling centers that induce and pattern the germ layers and help establish the key embryonic axes. In the embryos of teleost fish, in particular, significant progress has been made in understanding how signaling activity in extraembryonic domains, such as the enveloping layer, the yolk syncytial layer, and the yolk cell, might help regulate development via a combination of inductive interactions, cellular dynamics, and localized gene expression. Ca(2+) signaling in a variety of forms that include propagating waves and standing gradients is a feature found in all three teleostean extraembryonic domains. This leads us to propose that in addition to their other well-characterized signaling activities, extraembryonic domains are well suited (due to their relative stability and continuity) to act as Ca(2+) signaling centers and conduits.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
2
|
Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry. Sci Rep 2014; 3:2278. [PMID: 23880666 PMCID: PMC3721081 DOI: 10.1038/srep02278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022] Open
Abstract
We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres. We find no asymmetry in mRNA levels that might be ascribed to the dorso-ventral specification or the left-right axis formation. We hypothesize that while the animal-vegetal asymmetry is a consequence of mRNA gradients, the dorso-ventral and left-right axes specifications are induced by asymmetric distribution of other biomolecules, probably proteins.
Collapse
|
3
|
GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos. PLoS One 2012; 7:e36655. [PMID: 22574208 PMCID: PMC3345025 DOI: 10.1371/journal.pone.0036655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/04/2012] [Indexed: 12/14/2022] Open
Abstract
The formation of dorsal-ventral (D–V) axis is the earliest event that breaks the radial symmetry and determines the bilateral body plan of a vertebrate embryo, however, the maternal control of this process is not fully understood. Here, we discovered a new dorsalizing window of acute lithium treatment, which covers only less than 10 minutes after fertilization. Lithium treatment in this window was not able to reverse the ventralized phenotype in tokkeabi (tkk) mutant embryos, and its dorsalizing activity on wild-type embryos was inhibited by nocodazole co-treatment. These evidences indicate that the underlying mechanism is independent of a direct activation of Wnt/β-catenin signaling, but depends on the upstream level of the microtubule mediated dorsal determinant transport. In order to identify the target of lithium in this newly discovered sensitive window, GSK-3 inhibitor IX as well as the IMPase inhibitor L690, 330 treatments were performed. We found that only GSK-3 inhibitor IX treatment mimicked the lithium treatment in the dorsalizing activity. Further study showed that the parallel pattern of cortical microtubules in the vegetal pole region and the directed migration of the Wnt8a mRNA were randomized by either lithium or GSK-3 inhibitor IX treatment. These results thus revealed an early and critical role of GSK-3 activity that regulates the orientation of the cortical microtubules and the directed transport of the dorsal determinants in zebrafish embryos.
Collapse
|
4
|
Establishment of a transitory dorsal-biased window of localized Ca2+ signaling in the superficial epithelium following the mid-blastula transition in zebrafish embryos. Dev Biol 2009; 327:143-57. [DOI: 10.1016/j.ydbio.2008.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/24/2008] [Accepted: 12/03/2008] [Indexed: 12/28/2022]
|
5
|
microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci U S A 2008; 105:17830-5. [PMID: 19004786 DOI: 10.1073/pnas.0804673105] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Organ patterning during embryonic development requires precise temporal and spatial regulation of protein activity. microRNAs (miRNAs), small noncoding RNAs that typically inhibit protein expression, are broadly important for proper development, but their individual functions during organogenesis are largely unknown. We report that miR-138 is expressed in specific domains in the zebrafish heart and is required to establish appropriate chamber-specific gene expression patterns. Disruption of miR-138 function led to ventricular expansion of gene expression normally restricted to the atrio-ventricular valve region and, ultimately, to disrupted ventricular cardiomyocyte morphology and cardiac function. Temporal-specific knockdown of miR-138 by antagomiRs showed miR-138 function was required during a discrete developmental window, 24-34 h post-fertilization (hpf). miR-138 functioned partially by repressing the retinoic acid synthesis enzyme, aldehyde dehydrogenase-1a2, in the ventricle. This activity was complemented by miR-138-mediated ventricular repression of the gene encoding versican (cspg2), which was positively regulated by retinoic-acid signaling. Our findings demonstrate that miR-138 helps establish discrete domains of gene expression during cardiac morphogenesis by targeting multiple members of a common pathway, and also establish the use of antagomiRs in fish for temporal knockdown of miRNA function.
Collapse
|
6
|
Freisinger CM, Schneider I, Westfall TA, Slusarski DC. Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning. Philos Trans R Soc Lond B Biol Sci 2008; 363:1377-85. [PMID: 18198152 PMCID: PMC2610126 DOI: 10.1098/rstb.2007.2255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many aspects of animal development including fertilization as well as organ formation and function are dependent upon the dynamic release of calcium (Ca(2+)) ions. Although the controlled release and/or accumulation of Ca(2+) ions has been extensively studied, how the release dynamics produce a specific biological output in embryonic development is less clear. We will briefly summarize Ca(2+) sources, highlight data on endogenous Ca(2+) release in vertebrate embryos relevant to body plan formation and cell movement, and integrate pharmacological and molecular-genetic studies to lend insight into the signalling pathways involved. Finally, based on in vivo imaging in zebrafish genetic mutants, we will put forward the model that distinct Ca(2+) release dynamics lead to antagonism of the developmentally important Wnt/beta-catenin signalling pathway, while sustained Ca(2+) release modulates cell polarization or directed migration.
Collapse
|
7
|
Webb SE, Miller AL. Ca2+SIGNALLING AND EARLY EMBRYONIC PATTERNING DURING ZEBRAFISH DEVELOPMENT. Clin Exp Pharmacol Physiol 2007; 34:897-904. [PMID: 17645637 DOI: 10.1111/j.1440-1681.2007.04709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.
Collapse
Affiliation(s)
- Sarah E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
8
|
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 2007; 307:1-13. [PMID: 17531967 PMCID: PMC2729314 DOI: 10.1016/j.ydbio.2007.04.043] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that rely on the controlled release and/or accumulation of calcium ions are important in a variety of developmental events in the vertebrate embryo, affecting cell fate specification and morphogenesis. One such major developmentally important pathway is the Wnt/calcium signaling pathway, which, through its antagonism of Wnt/beta-catenin signaling, appears to regulate the formation of the early embryonic organizer. In addition, the Wnt/calcium pathway shares components with another non-canonical Wnt pathway involved in planar cell polarity, suggesting that these two pathways form a loose network involved in polarized cell migratory movements that fashion the vertebrate body plan. Furthermore, left-right axis determination, neural induction and somite formation also display dynamic calcium release, which may be critical in these patterning events. Finally, we summarize recent evidence that propose a role for calcium signaling in stem cell biology and human developmental disorders.
Collapse
Affiliation(s)
- Diane C. Slusarski
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, Phone: 319.335.3229, FAX: 319.335.1069,
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI 53706, Phone: 608.265.9286, FAX: 608.262.2976,
| |
Collapse
|
9
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
10
|
Ashworth R. Approaches to measuring calcium in zebrafish: focus on neuronal development. Cell Calcium 2004; 35:393-402. [PMID: 15003849 DOI: 10.1016/j.ceca.2004.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 12/20/2003] [Accepted: 01/06/2004] [Indexed: 02/03/2023]
Abstract
Calcium ions are known to act as important cellular signals during nervous system development. In vitro studies have provided significant information on the role of calcium signals during neuronal development; however, the function of this messenger in nervous system maturation in vivo remains to be established. The zebrafish has emerged as a valuable model for the study of vertebrate embryogenesis. Fertilisation is external and the rapid growth of the transparent embryo, including development of internal organs, can be observed easily making it well suited for imaging studies. The developing nervous system is relatively simple and has been well characterised, allowing individual neurons to be identified. Using the zebrafish model, both intracellular and intercellular calcium signals throughout embryonic development have been characterised. This review summarises technical approaches to measure calcium signals in developing embryonic and larval zebrafish, and includes recent developments that will facilitate the study of calcium signalling in vivo. The application of calcium imaging techniques to investigate the action of this messenger during embryogenesis in intact zebrafish is illustrated by discussion of their contribution to our understanding of neuronal development in vivo.
Collapse
Affiliation(s)
- Rachel Ashworth
- Department of Physiology, University College London, Rockefeller Building, University Street, London WC1E 6JJ, UK.
| |
Collapse
|
11
|
Creton R. The calcium pump of the endoplasmic reticulum plays a role in midline signaling during early zebrafish development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 151:33-41. [PMID: 15246690 DOI: 10.1016/j.devbrainres.2004.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 11/24/2022]
Abstract
During early vertebrate development, a signaling network is activated along the midline of the embryo. This signaling network induces the neural tube floor plate and ventral brain regions. In turn, induction of the ventral brain region is important for bilateral division of the forebrain and bilateral separation of the eyes. The present study provides direct evidence for a role of the endoplasmic reticulum Ca(2+) pump in zebrafish midline signaling. The endoplasmic reticulum Ca(2+) pump was inhibited in zebrafish embryos using thapsigargin or cyclopiazonic acid. Inhibition of the endoplasmic reticulum Ca(2+) pump during early gastrulation induces cyclopia, mimicking defects observed in cyclops, squint, one-eyed pinhead, and silberblick mutant embryos. In contrast, inhibition of the endoplasmic reticulum Ca(2+) pump during mid-gastrulation does not induce cyclopia, but does induce tail defects, mimicking defects observed in no-tail mutant embryos. This study is the first to relate thapsigargin and cyclopiazonic acid with induction of cyclopia. In addition, obtained results provide new information on the roles of Ca(2+) in embryonic development and may lead to new insights on the mechanisms underlying holoprosencephaly, a relatively common brain defect in human development.
Collapse
Affiliation(s)
- Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, box G-B187, Providence, RI 02912, USA.
| |
Collapse
|
12
|
Westfall TA, Hjertos B, Slusarski DC. Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning. Dev Biol 2003; 259:380-91. [PMID: 12871708 DOI: 10.1016/s0012-1606(03)00209-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphoinositide (PI) cycle is an important signal transduction pathway that, upon activation, generates intracellular second messengers and leads to calcium release. To determine whether PI cycle-mediated intracellular calcium release is required for body plan formation, we systematically dissect PI cycle function in the zebrafish (Danio rerio). We inhibit PI cycle function at three different steps and deplete internal calcium stores, demonstrating an impact on endogenous calcium release and Wnt/beta-catenin signaling. Inhibition of endogenous calcium modulation induces hyperdorsalized phenotypes in a dose-dependent manner. Ectopic dorsal-signaling centers are generated in PI cycle-inhibited embryos as demonstrated by altered beta-catenin subcellular localization and ectopic expression of beta-catenin target genes. These results provide evidence that modulation of calcium release is critical for early embryonic patterning and acts by influencing the stabilization of beta-catenin protein.
Collapse
Affiliation(s)
- Trudi A Westfall
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
13
|
Elinson RP, Beckham Y. Development in frogs with large eggs and the origin of amniotes. ZOOLOGY 2002; 105:105-17. [PMID: 16351861 DOI: 10.1078/0944-2006-00060] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 06/04/2002] [Accepted: 06/10/2002] [Indexed: 11/18/2022]
Abstract
The origin of the amniote egg is one of the most significant events in the evolution of terrestrial vertebrates. This innovation was probably driven by increased egg size, and to find potential parallels, we can examine the derived development of extant amphibians with large eggs. The embryo of the Puerto Rican tree frog, Eleutherodactylus coqui, exhibits an alteration of its fate map and a secondary coverage of its yolky cells, reflecting the large 3.5 mm egg. Comparable changes may have occurred with the derivation of an amniote pattern of development. Future investigations should focus on the molecular organization of the egg. In the model amphibian for development, Xenopus laevis, information for embryonic germ layers, the dorsal axis, and germ cells is stored mainly as localized RNAs at the vegetal pole of the egg. These localizations would likely be changed with increased egg size. A review of the orthologues of the key X. laevis genes raises the possibility that their activities are not conserved in other vertebrates.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
14
|
Herwig R, Aanstad P, Clark M, Lehrach H. Statistical evaluation of differential expression on cDNA nylon arrays with replicated experiments. Nucleic Acids Res 2001; 29:E117. [PMID: 11726700 PMCID: PMC96709 DOI: 10.1093/nar/29.23.e117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper we focus on the detection of differentially expressed genes according to changes in hybridization signals using statistical tests. These tests were applied to 14 208 zebrafish cDNA clones that were immobilized on a nylon support and hybridized with radioactively labeled target mRNA from wild-type and lithium-treated zebrafish embryos. The methods were evaluated with respect to 16 control clones that correspond to eight different genes which are known to be involved in dorso-ventral axis specification. Moreover, 4608 Arabidopsis thaliana clones on the same array were used to judge statistical significance of expression changes and to control the false positive rates of the test decisions. Utilizing this special array design we show that differential expression of a high proportion of cDNA clones (15/16) and the respective genes (7/8) were identified, with a false positive error of <5% using the constant control data. Furthermore, we investigated the influence of the number of repetitions of experiments on the accuracy of the procedures with experimental and simulated data. Our results suggest that the detection of differential expression with repeated hybridization experiments is an accurate and sensitive way of identifying even small expression changes (1:1.5) of a large number of genes in parallel.
Collapse
Affiliation(s)
- R Herwig
- Max-Planck Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | |
Collapse
|