1
|
Franco S, Severini L, Buratti E, Tavagnacco L, Sennato S, Micheli L, Missori M, Ruzicka B, Mazzuca C, Zaccarelli E, Angelini R. Gellan-based hydrogels and microgels: A rheological perspective. Carbohydr Polym 2025; 354:123329. [PMID: 39978911 DOI: 10.1016/j.carbpol.2025.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Gellan gum-based systems have gained significant attention due to their versatility for multiple applications. In particular, they have shown a great potentiality in the field of cultural heritage, as efficient paper artwork cleaning agents in restoration processes. This efficacy is enhanced when gellan gum is assembled to form stable microgels, by controlling the gelation process under shear. Moreover, the use of methacrylated gellan gum provides additional functionality to the systems, that are also able to remove hydrophobic residues during the cleaning process. However, in order to optimize the manufacturing process, it is fundamental to obtain a thorough understanding of the rheological behaviour of the employed gellan gels in the optimal working conditions for paper cleaning. The present work aims to thoroughly characterize the rheological properties of low-acyl gellan gum, also during hydrogel and microgel formation, assessing the role of temperature (25-80 °C), gellan concentration (0.5-5 % for hydrogels and 0.1-0.5 % for microgels), methacrylation, presence of different cations (Na+, Ca2+) and salt concentration (0.25-5.0 mM for hydrogels and 100 mM for microgels), on the behaviour of viscosity and viscoelastic moduli. We find the notable result that gellan hydrogels and microgels exhibit a double yielding behaviour in the conditions where they are mostly efficient for art restoration. Furthermore, we identify the optimal rheological conditions of these gels for efficient artwork restoration, opening the possibility to extend their applications to different substrates and in other fields.
Collapse
Affiliation(s)
- Silvia Franco
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Leonardo Severini
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy
| | - Letizia Tavagnacco
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Simona Sennato
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Roma 00133, Italy
| | - Mauro Missori
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Barbara Ruzicka
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Roma 00133, Italy
| | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Roberta Angelini
- Institute for Complex Systems, National Research Council, Sede Sapienza, Piazzale Aldo Moro, 5, Rome 00185, Italy; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
2
|
Biswal S, Parmanik A, Das D, Sahoo RN, Nayak AK. Gellan gum-based in-situ gel formulations for ocular drug delivery: A practical approach. Int J Biol Macromol 2025; 290:138979. [PMID: 39708866 DOI: 10.1016/j.ijbiomac.2024.138979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ophthalmic disorders significantly impact global health, affecting millions worldwide. Conventional treatments often face challenges related to poor bioavailability and short residence times on the ocular surface. In recent years, in-situ gels prepared using different natural gums including gellan gum has been investigated as a viable means of improving ocular medication delivery. Gellan gum undergoes ionotropic-gelation in the presence of multivalent cations, making it suitable for ocular formulations. The synthesis and purification of gellan gum involve microbial fermentation processes. Incorporating gellan gum into ophthalmic formulations offers several advantages, including prolonged residence time, enhanced drug retention, and improved bioavailability. Characterisation techniques such as gelling capacity determination, FTIR spectroscopy, TEM, viscosity and rheological studies and ex-vivo or in-vitro release studies are crucial for assessing the structural and functional properties of gellan gum-based in-situ gels. Numerous investigations have exhibited gellan gum's potential in different drug loaded in-situ gels for ophthalmic uses, resulting in extended drug residency on the ocular surface and enhanced therapeutic effects. The current review presents a comprehensive discussion on preparation, characterisation, recent applications and future prospects of gellan gum-based in-situ gels for ocular drug delivery. In addition, it covers molecular structure, synthesis and characterisation of gellan gum.
Collapse
Affiliation(s)
- Snehanjana Biswal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Ankita Parmanik
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Debajyoti Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India.
| |
Collapse
|
3
|
Moyo MTG, Adali T, Edebal OH. ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications. Gels 2024; 10:824. [PMID: 39727582 DOI: 10.3390/gels10120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.3%, 0.5%, 0.75%, and 1% gellan gum combined with 3% silk fibroin and 4.2% sodium alginate separately, using physical and ionic cross-linking. Swelling behavior was analyzed in phosphate (pH 7.4) and acetic (pH 1.2) buffers and surface morphology was examined by scanning electron microscopy (SEM). Hemocompatibility tests included complete blood count (CBC), coagulation assays, hemolysis index, erythrocyte morphology, and platelet adhesion analysis. Results showed that gellan gum-sodium alginate hydrogels exhibited faster swelling than gellan gum-silk fibroin formulations. SEM indicated smoother surfaces with sodium alginate, while silk fibroin increased roughness, further amplified by higher gellan-gum concentrations. Hemocompatibility assays confirmed normal profiles in formulations with 0.3%, 0.5%, and 0.75% gellan gum, while 1% gellan gum caused significant hemolytic and thrombogenic activity. These findings highlight the excellent hemocompatibility of gellan-gum-based hydrogels, especially the sodium alginate variants, supporting their potential in bioengineering, tissue engineering, and blood-contacting biomedical applications.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia 99138, North Cyprus, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
- Research and Applications Center of Biomedical Sciences, Girne American University, Karmi Campus, Kyrenia 99428, North Cyprus, Turkey
| | - Oğuz Han Edebal
- Clinical Biochemistry Laboratory, Near East University Hospital, Nicosia 99138, North Cyprus, Turkey
| |
Collapse
|
4
|
Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication 2024; 17:015005. [PMID: 39366424 PMCID: PMC11499629 DOI: 10.1088/1758-5090/ad8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
Collapse
Affiliation(s)
- S R Moxon
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - Z McMurran
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - M J Kibble
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - M Domingos
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - J E Gough
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - S M Richardson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Wang H, Zhao H, Wu X, Zhang X, Wang J, Liu Y, Zhang J. Superlubricity Achieved by a Transparent Poly(vinylpyrrolidone) Composite Hydrogel with Glycerol Ethoxylate in Ocular Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6816-6823. [PMID: 38502787 DOI: 10.1021/acs.langmuir.3c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Efficient and stable ocular lubrication is pivotal in safeguarding eye tissues from wear, especially under repetitive strain due to frequent blinking. Hydrogels have been reported to possess adjustable mechanical properties, biocompatibility, durability, and elevated water content and extensive utilization in medical fields. In this work, a kind of visible photo-cross-linking poly(vinylpyrrolidone) (PVP) hydrogel was designed and synthesized using 1-vinyl-2-pyrrolidone (NVP) and poly(ethylene glycol) diacrylate (PEGDA). To optimize the structure and improve the lubrication performance of hydrogels, we prepared and investigated glycerol ethoxylate (GE)-introduced composite hydrogels (GE/PVP). The results show that the addition of 3 wt % GE helped the hydrogel to form a uniform and dense porous matrix and reduce the frictional coefficient (COF) by over 50%, achieving superlubricity (COF ≈ 0.005). However, with the excessive increase of GE (6 wt %), the structure of the hydrogel is destroyed, inducing pore walls to thin and expand. After that, a lubrication mechanism of the GE/PVP composite hydrogel was proposed, in which the addition of GE reduced the surface tension of the hydrogel, enhanced the hydration ability of the hydrogel, and thus decreased the friction between sliding surfaces. Besides, the cytotoxicity tests show that the composite hydrogels possess good biocompatibility. Overall, the as-synthesized hydrogels hold great potential as lubricating medium for use in ocular applications.
Collapse
Affiliation(s)
- Hongdong Wang
- School of Mechatronic Engineering and Automation, Ministry of Education, Shanghai University, Shanghai 200444, China
- School of Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Haiyu Zhao
- School of Mechatronic Engineering and Automation, Ministry of Education, Shanghai University, Shanghai 200444, China
- School of Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
| | - Xingyang Wu
- School of Mechatronic Engineering and Automation, Ministry of Education, Shanghai University, Shanghai 200444, China
- School of Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
| | - Xiacong Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Junyu Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianhua Zhang
- School of Mechatronic Engineering and Automation, Ministry of Education, Shanghai University, Shanghai 200444, China
- School of Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Wang H, Wang Q, Su Y, Wang J, Zhang X, Liu Y, Zhang J. Thermosensitive Triblock Copolymer for Slow-Release Lubricants under Ocular Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1675-1687. [PMID: 38127457 DOI: 10.1021/acsami.3c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The ocular environment is crucial for a biological lubrication system. An unstable condition of tear film may cause a series of ocular diseases due to serious friction, such as dry eye syndrome, which has drawn extensive attention nowadays. In this study, an in vitro biocompatible superlubricity system, containing thermogelling copolymers (PCGA-PEG-PCGA) and slow-release lubricant (PEG 300/Tween 80), was constructed. First, the sol-gel transition temperature and gel strength of PCGA-PEG-PCGA were adjusted based on the ocular environment by regulating the length of PCGA blocks. Furthermore, the copolymer hydrogel exhibited a reliable slow-release property within 10 days and showed low cytotoxicity. Then, the superlubricity (coefficient of friction of approximately 0.005) was achieved with its released PEG 300/Tween 80 aqueous solution at the sliding velocity range of 1-100 mm s-1 and pressure range of 10-22 kPa. However, the lubrication behaviors varied, while PEG 300 chains and Tween 80 micelles were demonstrated to form a multilayer and a single layer adsorption structure on the sliding surface, respectively. On the whole, the composite lubrication systems, especially the one composed of Tween 80, showed excellent tribological properties owing to the stable slow-release and full hydration effects under ocular conditions, which hold great potential for improving ocular lubrication and maintaining human visual health.
Collapse
Affiliation(s)
- Hongdong Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Qi Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Yunjuan Su
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Junyu Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Xiacong Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| |
Collapse
|
7
|
Shanthi Chede L, Donovan MD. Evaluation of bioadhesive gels for local action in the esophagus. Int J Pharm 2023; 642:123115. [PMID: 37302670 DOI: 10.1016/j.ijpharm.2023.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Direct drug administration to the esophagus faces several obstacles, including continuous salivary dilution and removal of the dosage form from the tissue surface due to esophageal peristalsis. These actions often result in short exposure times and reduced concentrations of drug at the esophageal surface, providing limited opportunities for drug absorption into or across the esophageal mucosa. A variety of bioadhesive polymers were investigated for their ability to resist removal by salivary washings using an ex vivo porcine esophageal tissue model. Hydroxypropylmethylcellulose and carboxymethylcellulose both have reported bioadhesive properties, but neither was able to withstand repeated exposure to saliva, and the gels formulated with these polymers were quickly removed from the esophageal surface. Two polyacrylic polymers, carbomer and polycarbophil, also showed limited esophageal surface retention when exposed to salivary washing, likely due to the ionic composition of saliva affecting the inter-polymer interactions necessary for these polymers to maintain their increased viscosities. In situ gel forming polysaccharide gels (ion-triggered), including xanthan gum, gellan gum, and sodium alginate, showed superior tissue surface retention, and formulations containing these bioadhesive polymers along with ciclesonide, an anti-inflammatory soft prodrug, were investigated as potential, locally-acting esophageal delivery systems. Exposure of a segment of esophagus to the ciclesonide-containing gels resulted in therapeutic concentrations of des-ciclesonide, the active drug metabolite, in the tissues within 30 min. Increasing des-CIC concentrations were also observed over a 3-hour exposure interval suggesting continued release and absorption of ciclesonide into the esophageal tissues. These results demonstrate the ability to achieve therapeutic drug concentrations in the esophageal tissues using in situ gel-forming bioadhesive polymer delivery systems, and these systems provide promising opportunities for the local treatment of esophageal disease.
Collapse
Affiliation(s)
- Laxmi Shanthi Chede
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, Iowa City, Iowa, 52242-1112, USA
| | - Maureen D Donovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, 115 S Grand Avenue, Iowa City, Iowa, 52242-1112, USA.
| |
Collapse
|
8
|
Vivero-Lopez M, Sparacino C, Quelle-Regaldie A, Sánchez L, Candal E, Barreiro-Iglesias A, Huete-Toral F, Carracedo G, Otero A, Concheiro A, Alvarez-Lorenzo C. Pluronic®/casein micelles for ophthalmic delivery of resveratrol: In vitro, ex vivo, and in vivo tests. Int J Pharm 2022; 628:122281. [DOI: 10.1016/j.ijpharm.2022.122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
9
|
Rathod S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 2022; 43:1063-1074. [PMID: 36053474 DOI: 10.1007/s10792-022-02482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ''smart" materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.
Collapse
Affiliation(s)
- Sachin Rathod
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat, 394350, India. .,Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, 391760, India.
| |
Collapse
|
10
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
11
|
Temperature-Ion-pH Triple Responsive Gellan Gum as In Situ Hydrogel for Long-Acting Cancer Treatment. Gels 2022; 8:gels8080508. [PMID: 36005109 PMCID: PMC9407511 DOI: 10.3390/gels8080508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Promising cancer chemotherapy requires the development of suitable drug delivery systems (DDSs). Previous research has indicated that a hydrogel is a powerful DDS for tumor therapy and holds great potential to offer a feasible method for cancer management. Methods: In this study, glutathione-gellan gum conjugate (GSH-GG) was synthesized through chemical reaction. Doxorubicin hydrochloride (DOX) was loaded into GSH-GG to accomplish DOX-loaded GSH-GG. The properties, injectability, drug release, and in vitro and in vivo anticancer effects of DOX-loaded GSH-GG were tested. Results: DOX-loaded GSH-GG showed a temperature-ion dual responsive gelling property with good viscosity, strength, and injectability at an optimized gel concentration of 1.5%. In addition, lower drug release was found under acidic conditions, offering beneficial long-acting drug release in the tumor microenvironment. DOX-loaded GSH-GG presented selective action by exerting substantially higher cytotoxicity on cancer cells (4T1) than on normal epithelial cells (L929), signifying the potential of complete inhibition of tumor progression, without affecting the health quality of the subjects. Conclusions: GSH-GG can be applied as a responsive gelling material for delivering DOX for promising cancer therapy.
Collapse
|
12
|
Ciprofloxacin-Loaded Zein/Hyaluronic Acid Nanoparticles for Ocular Mucosa Delivery. Pharmaceutics 2022; 14:pharmaceutics14081557. [PMID: 35893813 PMCID: PMC9332751 DOI: 10.3390/pharmaceutics14081557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/03/2023] Open
Abstract
Bacterial conjunctivitis is a worldwide problem that, if untreated, can lead to severe complications, such as visual impairment and blindness. Topical administration of ciprofloxacin is one of the most common treatments for this infection; however, topical therapeutic delivery to the eye is quite challenging. To tackle this, nanomedicine presents several advantages compared to conventional ophthalmic dosage forms. Herein, the flash nanoprecipitation technique was applied to produce zein and hyaluronic acid nanoparticles loaded with ciprofloxacin (ZeinCPX_HA NPs). ZeinCPX_HA NPs exhibited a hydrodynamic diameter of <200 nm and polydispersity index of <0.3, suitable for ocular drug delivery. In addition, the freeze-drying of the nanoparticles was achieved by using mannitol as a cryoprotectant, allowing their resuspension in water without modifying the physicochemical properties. Moreover, the biocompatibility of nanoparticles was confirmed by in vitro assays. Furthermore, a high encapsulation efficiency was achieved, and a release profile with an initial burst was followed by a prolonged release of ciprofloxacin up to 24 h. Overall, the obtained results suggest ZeinCPX_HA NPs as an alternative to the common topical dosage forms available on the market to treat conjunctivitis.
Collapse
|
13
|
Sun J, Sun X. Preparation of a novel tacrolimus ion sensitive ocular in situ gel and in vivo evaluation of curative effect of immune conjunctivitis. Pharm Dev Technol 2022; 27:399-405. [PMID: 35579910 DOI: 10.1080/10837450.2022.2067870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of this study was to formulate a novel TAC preparation into an in situ gel for ocular drug delivery, in order to prolong the residence time on mucosal surfaces and increase patient compliance. METHODS The optimal formulation was characterized by surface morphology, gelling capacity, viscosity, stability and in vitro release. In vivo studies were also conducted to evaluate the precorneal retention and pharmacodynamic results. RESULTS In this study, the TAC in situ gel can be prepared by a simple solvent stirring method, and the optimized formulation exhibited good stability within 3 months. During storage, the initial viscosity of the formula had little change. The results of viscosity measurement showed that TAC in situ gel was typical of pseudo plastic systems and exhibited a marked increase in viscosity stimulated with STF. In vitro and in vivo studies illustrated that TAC in situ gel administration facilitated the retention and sustained release of TAC. CONCLUSIONS TAC combined with in situ gelling agents demonstrates an efficient topical drug delivery platform.
Collapse
Affiliation(s)
- Jinfu Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Aboumanei MH, Mahmoud AF. Development of Tamoxifen In Situ Gel Nanoemulsion for Ocular Delivery in Photoreceptor Degeneration Disorder: In Vitro Characterization, 131I-Radiolabeling, and In Vivo Biodistribution Studies. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose
The aim of our work is to develop an in situ ocular gellan gum–based nanoemulsion (NE) of tamoxifen TAM as an alternative drug delivery system to the oral route for the treatment of photoreceptor degeneration disorder.
Method
Six pseudoternary phase diagrams were developed using oil (oleic acid), surfactants (Tween 80 or Tween 20), a co-surfactant (polyethylene glycol 400), and water. The particle size, polydispersity index, and zeta potential of the developed systems were all measured. The safety of ocular application of the optimum system was established via in vivo histopathological investigation. To track the biodistribution of the optimum gel, iodine-131 (131I) was incorporated into the gel via coupling with TAM via direct electrophilic substitution reaction.
Results
Based on the obtained results, TAMNE-1 was chosen as the optimal system, with PS = 140.20 ± 1.50 nm, ZP = − 27.86 ± 1.13 mV, and PDI = 0.20 ± 0.00%. In vitro release displayed a prolonged and sustained release of TAMNE-1 gel compared to TAM solution (plain eye drop). Transparent in situ TAMNE-1 gel was developed after the incorporation of the TAMNE-1 system into gellan gum aqueous solution (0.3% w/w). In this study, TAM was successfully radiolabeled with 131I for subsequent evaluation of the efficacy of the developed in situ gel system (TAMNE-1 gel) in vivo. The developed TAMNE-1 gel system was nonirritant and safe and the biodistribution studies showed better retention of TAMNE-1 gel than plain TAM eye drops.
Conclusion
The developed TAMNE-1 gel is able to enhance the ocular bioavailability of TAM and can go further with clinical evaluation.
Graphic Abstract
Collapse
|
15
|
Abbas MN, Khan SA, Sadozai SK, Khalil IA, Anter A, Fouly ME, Osman AH, Kazi M. Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers (Basel) 2022; 14:1135. [PMID: 35335465 PMCID: PMC8951139 DOI: 10.3390/polym14061135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotics delivered through conventional dosage against ophthalmic infections show lower therapeutic efficacy due to their low residence time. Therefore, there is a great need to design and develop novel dosage forms that would increase the ocular residence time of antibiotics at the site of infection. This study describes the development of nanoparticles laden in situ gelling solution, intended to sustain antibiotic release for improved therapeutic efficiency. Oxytetracycline-loaded gelatin-polyacrylic acid nanoparticles were prepared and incorporated in poloxamer-N407 solution. The rheological properties of the system were studied concerning time and temperature. Moreover, in vivo biocompatibility of the system was ascertained using the Draize test and histological studies. Finally, the optimized formulation was evaluated for in vitro antibacterial activity against one of the most common keratitis causing bacteria, Pseudomonas aeruginosa. Additionally, the in vivo efficacy was evaluated on the rabbit's eye conjunctivitis model. The formulation showed a sustained effect against keratitis; furthermore, the antibacterial activity was comparable with the commercial product.
Collapse
Affiliation(s)
- Muhammad Naseer Abbas
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.N.A.); (S.K.S.)
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.N.A.); (S.K.S.)
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sajid Khan Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.N.A.); (S.K.S.)
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, Giza 12566, Egypt;
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology, Giza 12566, Egypt;
| | - Marwa El Fouly
- Department of Ophthalmology, Research Institute of Ophthalmology, Giza 12211, Egypt;
| | - Ahmed H. Osman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Alviset G, Corvis Y, Hammad K, Lemut J, Maury M, Mignet N, Boudy V. New Preservative-Free Formulation for the Enhanced Ocular Bioavailability of Prostaglandin Analogues in Glaucoma. Pharmaceutics 2022; 14:pharmaceutics14020453. [PMID: 35214185 PMCID: PMC8877962 DOI: 10.3390/pharmaceutics14020453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Glaucoma is a wide-spread eye disease caused by elevated intraocular pressure. Uncontrolled, this pressure may lead to damages to the optic nerve. Prostaglandin analogues, such as latanoprost and travoprost (which are water-insoluble active substances), are the most used class of active pharmaceutical ingredient. To administer them as eye drops, preservatives, such as benzalkonium chloride, are used as solubilizers. The latter is known to cause a local inflammation when used chronically and is not recommended for patients with ocular surface disorders. In this work, we sought to use polysorbate 80 (PS80) as a solubilizing agent simultaneously with sodium hyaluronate (NaHA) as a thickener and cytoprotective agent for the corneal surface. The first part of this study assessed the compatibility of the excipients with the active substance, using physicochemical methods such as spectra fluorescence and differential scanning calorimetry (DSC), as well as the solubilization mechanism of PS80 regarding prostaglandin analogues using nuclear magnetic resonance (NMR). The second part evaluated the stability of a formula candidate, its viscosity upon instillation, and its pharmacokinetic profile in rabbits as compared to the commercially approved medicine Travatan®. The results show that sodium hyaluronate is inert with respect to travoprost, while PS80 successfully solubilizes it, meaning that benzalkonium chloride is no longer required. Moreover, the pharmacokinetic profiles of the rabbits showed that the original formula described in the present study enhanced the ocular bioavailability of the drug, making it a promising product to control intraocular pressure with a potential reduced dosage of travoprost, therefore minimizing its related side effects.
Collapse
Affiliation(s)
- Gabriel Alviset
- Unither Développement Bordeaux, ZA Tech Espace, av. Toussaint Catros, 33185 Le Haillan, France;
- Faculté de Santé de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France; (Y.C.); (N.M.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Agence Générale des Équipements et Produits de Santé (AGEPS), Département de Recherche et Développement Pharmaceutique (DRDP), 7 rue du fer à Moulin, 75005 Paris, France
| | - Yohann Corvis
- Faculté de Santé de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France; (Y.C.); (N.M.)
| | - Karim Hammad
- Faculté de Santé de Paris, CNRS, CiTCoM, 75006 Paris, France;
| | - Josiane Lemut
- CMC Expert, 84 rue Maurice Béjart, 34080 Montpellier, France;
- Unither Pharmaceuticals, 3-5 rue St-Georges, 75009 Paris, France;
| | - Marc Maury
- Unither Pharmaceuticals, 3-5 rue St-Georges, 75009 Paris, France;
| | - Nathalie Mignet
- Faculté de Santé de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France; (Y.C.); (N.M.)
| | - Vincent Boudy
- Faculté de Santé de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France; (Y.C.); (N.M.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Agence Générale des Équipements et Produits de Santé (AGEPS), Département de Recherche et Développement Pharmaceutique (DRDP), 7 rue du fer à Moulin, 75005 Paris, France
- Correspondence: ; Tel.: +33-1-4669-1576
| |
Collapse
|
17
|
Al-Joufi FA, Salem-Bekhit MM, Taha EI, Ibrahim MA, Muharram MM, Alshehri S, Ghoneim MM, Shakeel F. Enhancing Ocular Bioavailability of Ciprofloxacin Using Colloidal Lipid-Based Carrier for the Management of Post-Surgical Infection. Molecules 2022; 27:733. [PMID: 35163997 PMCID: PMC8839099 DOI: 10.3390/molecules27030733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/02/2022] Open
Abstract
Conjunctivitis and endogenous bacterial endophthalmitis mostly occurred after ophthalmic surgery. Therefore, the present study aimed to maximize the ocular delivery of ciprofloxacin (CPX) using colloidal lipid-based carrier to control the post-surgical infection. In this study, CPX was formulated as ophthalmic liposomal drops. Two different phospholipids in different ratios were utilized, including phosphatidylcholine (PC) and dimyrestoyl phosphatidylcholine (DMPC). The physiochemical properties of the prepared ophthalmic liposomes were evaluated in terms of particle size, entrapment efficiency, polydispersity index, zeta potential, and cumulative CPX in-vitro release. In addition, the effect of sonication time on particle size and entrapment efficiency of CPX ophthalmic drops was also evaluated. The results revealed that most of the prepared formulations showed particle size in nanometer size range (460-1047 nm) and entrapment efficiency ranging from 36.4-44.7%. The antibacterial activity and minimum inhibitory concentration (MIC) were investigated. Ex vivo antimicrobial effect of promising formulations was carried out against the most common causes of endophthalmitis microorganisms. The pharmacokinetics of the prepared ophthalmic drops were tested in rabbit aqueous humor and compared with commercial CPX ophthalmic drops (Ciloxan®). Observed bacterial suppression was detected in rabbit's eyes conjunctivitis with an optimized formulation A3 compared with the commercial ophthalmic drops. CPX concentration in the aqueous humor was above MIC against tested bacterial strains. The in vivo data revealed that the tested CPX drops showed superiority over the commercial ones with respect to peak aqueous humor concentration, time to reach peak aqueous humor concentration, elimination rate constant, half-life, and relative bioavailability. Based on these results, it was concluded that the prepared ophthalmic formulations significantly enhanced CPX bioavailability compared with the commercial one.
Collapse
Affiliation(s)
- Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Al-Jouf 72341, Saudi Arabia;
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.I.T.); (M.A.I.); (S.A.); (F.S.)
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.I.T.); (M.A.I.); (S.A.); (F.S.)
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.I.T.); (M.A.I.); (S.A.); (F.S.)
| | - Magdy M. Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.I.T.); (M.A.I.); (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.I.T.); (M.A.I.); (S.A.); (F.S.)
| |
Collapse
|
18
|
Shen T, Yang Z. In vivo and in vitro Evaluation of in situ Gel Formulation of Pemirolast Potassium in Allergic Conjunctivitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2099-2107. [PMID: 34040348 PMCID: PMC8140898 DOI: 10.2147/dddt.s308448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Background To establish a novel delivery system of pemirolast potassium-loaded gellan gum in situ gel in allergic conjunctivitis therapy. Methods The prepared in situ gels were studied in the following aspects: in vitro gelation, in vitro release, stability, viscosity measurement, in vivo tear kinetics and pharmacodynamics. Results In this study, the results showed that the viscosity of the in situ gels significantly increased when the preparation was in contact with simulated tear fluid and it also exhibited good stability in a period of three months. In vitro release showed that the release of pemirolast potassium from in situ gels had a good sustained release ability. No ocular damage or abnormal clinical signs to the cornea, iris, or conjunctivae were visible. Consistent with the in vitro studies, pemirolast potassium in situ gels were highly efficient in suppressing the inflammatory symptoms and improving the ocular bioavailability. Conclusion Pemirolast potassium ocular in situ gels are safe and promising therapeutic alternatives to the existing medications for allergic conjunctivitis therapy.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zijian Yang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Eid HM, Naguib IA, Alsantali RI, Alsalahat I, Hegazy AM. Novel Chitosan-Coated Niosomal Formulation for Improved Management of Bacterial Conjunctivitis: A Highly Permeable and Efficient Ocular Nanocarrier for Azithromycin. J Pharm Sci 2021; 110:3027-3036. [PMID: 33940026 DOI: 10.1016/j.xphs.2021.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
In the present study, we aimed to formulate, optimize, and characterize azithromycin chitosan coated niosomes (AZM-CTS-NSM) as a novel colloidal system that increases precorneal residence period, eye permeation, and bioavailability. AZM-NSM was formulated via a modified thin-film hydration strategy and then coated with CTS. We assessed the influence of the cholesterol: surfactant molar ratio, CTS concentration, and surfactant type on particle diameter, entrapment, zeta potential, and NSM adhesion force to the corneal mucosal membrane and employed a central composite design (CCD). The resulting optimized AZM-CTS-NSM has a mean diameter of 376 nm, entrapment of 74.2%, surface charge of 32.1 mV, and mucoadhesion force of 3114 dyne/cm2. The optimized AZM-CTS-NSM demonstrated a prolonged in vitro release behavior. When compared with commercial eye drops, the optimized AZM-CTS-NSM produced a 2.61-fold increase in the apparent permeability coefficient, significantly improving corneal permeability. Additionally, ocular irritation was assessed, with no major irritant effects found to be induced by the formulated NSM. Compared with AZM commercial drops, the optimized AZM-CTS-NSM revealed ˃ 3-fold increase in AZM concentration in the rabbit eyes. Collectively, these findings indicate that CTS-NSM is a potentially valuable ocular nanocarrier that could augment the efficacy of AZM.
Collapse
Affiliation(s)
- Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Amira M Hegazy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62111, Egypt
| |
Collapse
|
20
|
Lavikainen J, Dauletbekova M, Toleutay G, Kaliva M, Chatzinikolaidou M, Kudaibergenov SE, Tenkovtsev A, Khutoryanskiy VV, Vamvakaki M, Aseyev V. Poly(2‐ethyl‐2‐oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - Maria Kaliva
- Department of Materials Science and Technology University of Crete Crete Greece
- Institute of Electronic Structure and Laser Foundation for Research and Technology—Hellas Crete Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology University of Crete Crete Greece
- Institute of Electronic Structure and Laser Foundation for Research and Technology—Hellas Crete Greece
| | | | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences Saint Petersburg Russian Federation
| | | | - Maria Vamvakaki
- Department of Materials Science and Technology University of Crete Crete Greece
- Institute of Electronic Structure and Laser Foundation for Research and Technology—Hellas Crete Greece
| | - Vladimir Aseyev
- Department of Chemistry University of Helsinki Helsinki Finland
| |
Collapse
|
21
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, Kesharwani P, Ravichandiran V, Kumar P, Naidu VGM, Murty US, Ajazuddin, Alexander A. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327:235-265. [PMID: 32739524 DOI: 10.1016/j.jconrel.2020.07.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India.
| |
Collapse
|
22
|
Fahmy UA, Ahmed OAA, Badr-Eldin SM, Aldawsari HM, Okbazghi SZ, Awan ZA, Bakhrebah MA, Alomary MN, Abdulaal WH, Medina C, Alhakamy NA. Optimized Nanostructured Lipid Carriers Integrated into In Situ Nasal Gel for Enhancing Brain Delivery of Flibanserin. Int J Nanomedicine 2020; 15:5253-5264. [PMID: 32801690 PMCID: PMC7386805 DOI: 10.2147/ijn.s258791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Flibanserin (FLB) is a multifunctional serotonergic agent used for treating hypoactive sexual desire disorder in premenopausal women via oral administration. FLB has a reported limited oral bioavailability of 33% that could be attributed to the drug’s first-pass metabolism. In addition, FLB has a pH-dependent solubility that could be a challenging factor for drug dissolution in the body neutral fluid, and consequently, absorption via mucosal barriers. Thus, this work aims at investigating the potential of utilizing nanostructured lipid carriers (NLCs) to overcome the aforementioned drawbacks and to enhance nose-to-brain drug delivery. Methods Box-Behnken design was applied to explore the impact of solid lipid % (SL%, X1), liquid lipid % (LL%, X2), and sonication time (ST, X3) on particle size. The optimized NLC formulation was characterized and incorporated into gellan gum in situ gel. The prepared gel was subjected to in vitro drug release, in vivo pharmacokinetic performance, and histopathological assessment in rats. Results Statistical analysis revealed a significant negative effect for both SL% and ST on NLCs size. In contrast, a significant positive effect was observed for the LL%. The optimized formulation showed spherical shape with vesicular size of 114.63 nm. The optimized FLB-NLC in situ gel exhibited adequate stability and enhanced in vitro release compared to raw FLB control gel. The plasma and brain concentrations of the drug after nasal administration in rats increased by more than 3–6-fold, respectively, compared to raw FLB in situ gel. In addition, the histopathological studies revealed the absence of any pathological signs. Conclusion The aforementioned results highlight the safety of FLB-NLC in situ nasal gel and its potential to improve the drug bioavailability and brain delivery.
Collapse
Affiliation(s)
- Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, Connecticut, NE 06510, USA
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed A Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Kingdom of Saudi Arabia
| | - Mohammad N Alomary
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carlos Medina
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin Ireland
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Fahmy UA, Badr-Eldin SM, Ahmed OAA, Aldawsari HM, Tima S, Asfour HZ, Al-Rabia MW, Negm AA, Sultan MH, Madkhali OAA, Alhakamy NA. Intranasal Niosomal In Situ Gel as a Promising Approach for Enhancing Flibanserin Bioavailability and Brain Delivery: In Vitro Optimization and Ex Vivo/ In Vivo Evaluation. Pharmaceutics 2020; 12:E485. [PMID: 32471119 PMCID: PMC7356232 DOI: 10.3390/pharmaceutics12060485] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022] Open
Abstract
Flibanserin (FLB) is a multifunctional serotonergic agent that was recently approved by the FDA for the oral treatment of premenopausal women with hypoactive sexual desire disorder. FLB is a centrally acting drug that has a low oral bioavailability of 33% owing to its exposure to the hepatic first-pass effect, as well as its pH-dependent solubility, which could be an obstacle hindering the drug dissolution and absorption via mucosal barriers. Thus, this work aimed at overcoming the aforementioned drawbacks and promoting the nose-to-brain delivery of FLB via the formulation of an intra-nasal in situ niosomal gel. The Box-Behnken design was employed to study the impact of Span® 85 concentration (X1), hydration time (X2), and pH of the hydrating buffer (X3) on the vesicle size and drug entrapment. The optimized formulation exhibited a spherical shape with a vesicular size of 46.35 nm and entrapment efficiency of 92.48%. The optimized FLB niosomes integrated into gellan gum-based in situ gel exhibited enhanced ex vivo permeation and improved plasma and brain concentrations after nasal administration in rats compared to raw FLB. These findings highlight the capability of the proposed intra-nasal FLB niosomal in situ gel to boost the drug bioavailability and to promote its direct delivery to the brain.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.); (H.M.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.); (H.M.A.); (N.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.); (H.M.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.); (H.M.A.); (N.A.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (M.W.A.-R.)
| | - Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (M.W.A.-R.)
| | - Aya A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44518, Egypt;
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.H.S.); (O.A.A.M.)
| | - Osama A. A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.H.S.); (O.A.A.M.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.); (H.M.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 2020; 150:559-572. [DOI: 10.1016/j.ijbiomac.2020.02.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
|
25
|
Agibayeva LE, Kaldybekov DB, Porfiryeva NN, Garipova VR, Mangazbayeva RA, Moustafine RI, Semina II, Mun GA, Kudaibergenov SE, Khutoryanskiy VV. Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies. Int J Pharm 2020; 577:119093. [DOI: 10.1016/j.ijpharm.2020.119093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
26
|
Göttel B, de Souza E Silva JM, Santos de Oliveira C, Syrowatka F, Fiorentzis M, Viestenz A, Viestenz A, Mäder K. Electrospun nanofibers - A promising solid in-situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm 2019; 146:125-132. [PMID: 31816391 DOI: 10.1016/j.ejpb.2019.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
A serious problem of the treatment of eye diseases is the very short residence time of the drug. The majority of the drug is cleared within few seconds due to the poor capability of the eye to accommodate additional liquids. We developed a new ocular drug delivery system, which is applied in dry form and forms immediately a gel after administration. The system is based on gellan gum/pullulan electrospun nanofibers. The rheological behavior of the spinning solution was investigated followed by further characterization of the in situ formed gel. Three-dimensional X-ray imaging with nanometric resolution (nano-CT) and electron scanning microscopy were used for a detailed characterization of the diameter and alignment of the fibers. A high porosity (87.5 ± 0.5%) and pore interconnectivity (99%) was found. To ensure a good fit to the eye anatomy, the prepared fibers were shaped into curved geometries. Additionally, a new innovative moistening chamber for the in vitro determination of the ocular residence time in porcine eyes was developed which mimics the tear turnover. A clear prolongation of the fluorescein residence time compared to conventional eye drops was achieved with the application of the curved nanofiber in situ gelling mat. In summary, the developed in situ gelling system with adapted geometry is a promising alternative system for ocular drug delivery.
Collapse
Affiliation(s)
- Benedikt Göttel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | | | - Cristine Santos de Oliveira
- Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Saale), Germany
| | - Frank Syrowatka
- The Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Saale), Germany
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Anja Viestenz
- Department of Ophthalmology, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Arne Viestenz
- Department of Ophthalmology, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
27
|
Destruel PL, Zeng N, Seguin J, Douat S, Rosa F, Brignole-Baudouin F, Dufaÿ S, Dufaÿ-Wojcicki A, Maury M, Mignet N, Boudy V. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm 2019; 574:118734. [PMID: 31705970 DOI: 10.1016/j.ijpharm.2019.118734] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
Achieving drug delivery at the ocular level encounters many challenges and obstacles. In situ gelling delivery systems are now widely used for topical ocular administration and recognized as a promising strategy to improve the treatment of a wide range of ocular diseases. The present work describes the formulation and evaluation of a mucoadhesive and ion-activated in situ gelling delivery system based on gellan gum and hydroxyethylcellulose for the delivery of phenylephrine and tropicamide. First, physico-chemical characteristics were assessed to ensure suitable properties regarding ocular administration. Then, rheological properties such as viscosity and gelation capacity were determined. Gelation capacity of the formulations and the effect of hydroxyethylcellulose on viscosity were demonstrated. A new rheological method was developed to assess the gel resistance under simulated eye blinking. Afterward, mucoadhesion was evaluated using tensile strength test and rheological synergism method in both rotational and oscillatory mode allowing mucoadhesive properties of hydroxyethylcellulose to be point out. Finally, residence time on the ocular surface was investigated in vivo, using cyanine 5.5 dye as a fluorescent marker entrapped in the in situ gelling delivery systems. Residence performance was studied by non-invasive optical imaging on vigilant rabbits, allowing eye blinking and nasolacrimal drainage to occur physiologically. Fluorescence intensity profiles pointed out a prolonged residence time on the ocular surface region for the developed formulations compared to conventional eye drops, suggesting in vitro / in vivo correlations between rheological properties and in vivo residence performances.
Collapse
Affiliation(s)
- Pierre-Louis Destruel
- Unither Développement Bordeaux, ZA Tech Espace, av Toussaint Catros, Le Haillan 33185, France; Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France; Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Ni Zeng
- Unither Pharmaceuticals, 3-5 rue St-Georges, Paris 75009, France
| | - Johanne Seguin
- Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Sophie Douat
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Frédéric Rosa
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Françoise Brignole-Baudouin
- UMR CNRS 8638 - Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, Paris 75006, France; CNRS UMR 7210 - Inserm UMR_S 968, Institut de la Vision, Paris, 75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS, CIC 503, Paris, 75012, France
| | - Sophie Dufaÿ
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Amélie Dufaÿ-Wojcicki
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France
| | - Marc Maury
- Unither Pharmaceuticals, 3-5 rue St-Georges, Paris 75009, France
| | - Nathalie Mignet
- Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1)
| | - Vincent Boudy
- Département Recherche et Développement Pharmaceutique, Agence Générale des Equipements et Produits de Santé (AGEPS), AP-HP, 7 rue du fer à moulin, Paris 75005, France; Université de Paris, UTCBS, CNRS, INSERM, Faculté de Pharmacie, 4 av de l'observatoire, Paris 75006, France(1).
| |
Collapse
|
28
|
Chiriac AP, Ghilan A, Neamtu I, Nita LE, Rusu AG, Chiriac VM. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Biosci 2019; 19:e1900187. [PMID: 31373753 DOI: 10.1002/mabi.201900187] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Indexed: 01/06/2025]
Abstract
(Nano)gels from macromolecular compounds-natural, synthetic, or a combination thereof, suitable crosslinkers-and conferred characteristics-such as degradability, size, charge, amphiphilicity, responsiveness, and softness-are capable of responding to the challenges imposed by bioengineering applications. Polysaccharide-based gels have received particular attention in this field. This review addresses recent advancement in the use of (nano)gel structures prepared only from compounds based on gellan gum, heparin, chondroitin sulfate, carrageenan, guar gum, galactose, or agarose, which represent an important part of the special class of natural polymers, the polysaccharides. Also, future trends are taken into discussion regarding the (nano)gels' use in biomedical applications such as biomimetics, biosensors, artificial muscles, and chemical separations in relation with their ability to be used as a vehicle for various biomolecules due to their physicochemical properties, biocompatibility, and biodegradability.
Collapse
Affiliation(s)
- Aurica P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Alina Ghilan
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Iordana Neamtu
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Loredana E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Alina G Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, 700487, Iaşi, Romania
| | - Vlad Mihai Chiriac
- "Gh. Asachi" Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I no. 11A, 700506, Iaşi, Romania
| |
Collapse
|
29
|
Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Ahmed OA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine 2018; 13:6325-6335. [PMID: 30349253 PMCID: PMC6188068 DOI: 10.2147/ijn.s181587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Raloxifene hydrochloride (RLX) is approved by the US Food and Drug Administration for the treatment and prevention of osteoporosis, in addition to reducing the risk of breast cancer in postmenopausal women. RLX has the disadvantages of low aqueous solubility, extensive presystemic intestinal glucuronidation, and first-pass metabolism, resulting in a limited bio-availability of only 2%. The aim of this work was to enhance the bioavailability of RLX via the formulation of an in situ nasal matrix (misemgel) comprising micelles made of vitamin E and D-α-tocopheryl polyethylene glycol 1000 succinate and nanosized self-emulsifying systems (NSEMS). MATERIALS AND METHODS Optimization of the RLX-loaded NSEMS was performed using a mixture design. The formulations were characterized by particle size and then incorporated into an in situ nasal gel. Transmission electron microscopy, bovine nasal mucosa ex vivo permeation, and visualization using a fluorescence laser microscope were carried out on the RLX in situ misemgel comparing with raw RLX in situ gel. In addition, the in vivo performance was studied in rats. RESULTS The results revealed improved permeation parameters for RLX misemgel compared with control gel, with an enhancement factor of 2.4. In vivo studies revealed a 4.79- and 13.42-fold increased bioavailability for RLX in situ misemgel compared with control RLX in situ gel and commercially available tablets, respectively. The obtained results highlighted the efficacy of combining two different formulations to enhance drug delivery and the benefits of utilizing different possible paths for drug absorption. CONCLUSION The developed in situ misemgel matrix could be considered as a promising multifunctional platform for nasal delivery which works based on a dual-absorption mechanism.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv 2018; 15:1007-1019. [PMID: 30173567 DOI: 10.1080/17425247.2018.1517741] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mucosal drug delivery is an attractive route of administration, particularly in overcoming deficits of conventional dosage forms including high first-pass metabolism and poor bioavailability. Fast drainage from the target mucosa, however, represents a major limitation as it prevents sufficient drug absorption. In order to address these problems, mucoadhesive in situ gelling drug delivery systems have been investigated as they facilitate easy application in combination with a longer residence time at the administration site resulting in more desirable therapeutic effects. AREAS COVERED The present review evaluates the importance of the combination of mucoadhesive and in situ gelling polymers along with mechanisms of in situ gelation and mucoadhesion. In addition, an overview about recent applications in mucosal drug delivery is provided. EXPERT OPINION In situ gelling and mucoadhesive polymers proved to be essential excipients in order to prolong the mucosal residence time of drug delivery systems. Due to this prolonged residence time both local and systemic therapeutic efficacy of numerous drugs can be substantially improved. Depending on the site of administration and the incorporated drug, combinations of different polymers with in situ gelling and mucoadhesive properties are needed to keep the delivery system as long as feasible at the target site.
Collapse
Affiliation(s)
- Forouhe Zahir-Jouzdani
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria.,b Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Julian Dominik Wolf
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria.,c Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck , Trientlgasse, Innsbruck , Austria
| | - Fatemeh Atyabi
- b Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Andreas Bernkop-Schnürch
- a Department of Pharmaceutical Technology , Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
32
|
Krtalić I, Radošević S, Hafner A, Grassi M, Nenadić M, Cetina-Čižmek B, Filipović-Grčić J, Pepić I, Lovrić J. D-Optimal Design in the Development of Rheologically Improved In Situ Forming Ophthalmic Gel. J Pharm Sci 2018; 107:1562-1571. [DOI: 10.1016/j.xphs.2018.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
|
33
|
Rajput A, Bariya A, Allam A, Othman S, Butani SB. In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 2018; 8:1460-1470. [DOI: 10.1007/s13346-018-0540-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Li P, Wang S, Chen H, Zhang S, Yu S, Li Y, Cui M, Pan W, Yang X. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev Ind Pharm 2017; 44:829-836. [PMID: 29212376 DOI: 10.1080/03639045.2017.1414232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to prepare and evaluate ion-activated in situ gel ophthalmic drug delivery system based on κ-carrageenan (KC), using acyclovir as a model drug, hydroxypropyl methylcellulose (HPMC) as the viscosity agent and hydroxypropyl-β-cyclodextrin (HP-β-CD) as the penetration enhancer. The two ternary phase diagrams exhibited the effect of K+ and Ca2+ on the sol-to-gel transition, which turned out that KC was more sensitive to K+. The optimal ophthalmic matrix (prepared from KC and HPMC) was optimized with in vitro drug release test. The apparent permeability coefficient of acyclovir under 2% HP-β-CD was found to have dramatically increased (2.16-ploid) than that of conventional eye drops (p < .05). The ion-activated in situ gel based on KC significantly delayed drug release and its bioavailability could be improved in comparison with the conventional eye drops. Hence, it has the potential to be a novel kind of ocular drug delivery system.
Collapse
Affiliation(s)
- Pingfei Li
- a Department of Traditional Chinese Medicine , Shenyang Pharmaceutical University , Shenyang , China
| | - Shu Wang
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Haoyuan Chen
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Shiming Zhang
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Shihui Yu
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Yuenan Li
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Mengsuo Cui
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Weisan Pan
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Xinggang Yang
- b Department of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
35
|
Munoz SZ, Zhadan R, Acosta E. Design of nonionic micelle-laden polysaccharide hydrogels for controlled delivery of hydrophobic drugs. Int J Pharm 2017; 526:455-465. [DOI: 10.1016/j.ijpharm.2017.04.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
36
|
Kotreka UK, Davis VL, Adeyeye MC. Development of topical ophthalmic In Situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLoS One 2017; 12:e0172306. [PMID: 28222100 PMCID: PMC5319703 DOI: 10.1371/journal.pone.0172306] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to develop and characterize an ion-activated in situ gel-forming estradiol (E2) solution eye drops intended for the prevention of age-related cataracts. Accordingly, in situ gelling eye drops were made using gellan gum as an ion-activated gel-forming polymer, polysorbate-80 as drug solubilizing agent, mannitol as tonicity agent, and combination of potassium sorbate and edetate disodium dihydrate (EDTA) as preservatives. The formulations were tested for the following characteristics: pH, clarity, osmolality, antimicrobial efficacy, rheological behavior, and in vitro drug release. Stability of the formulation was also monitored for 6 months at multiple storage conditions per ICH Q1A (R2) guidelines. The solution eye drops resulted in an in-situ phase change to gel-state when mixed with simulated tear fluid (STF). The gel structure formation was confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 80% of drug released in 8 hr. The formulations were found to be clear, isotonic with suitable pH and viscoelastic behavior and stable at accelerated and long-term storage conditions for 6 months. In vitro results suggest that the developed formulation is suitable for further investigation in animal models to elucidate the ability of estrogen to prevent and delay cataracts.
Collapse
Affiliation(s)
- Udaya K. Kotreka
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - Vicki L. Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - Moji C. Adeyeye
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States of America
| |
Collapse
|
37
|
Almeida H, Lobão P, Frigerio C, Fonseca J, Silva R, Quaresma P, Lobo JMS, Amaral MH. Development of mucoadhesive and thermosensitive eyedrops to improve the ophthalmic bioavailability of ibuprofen. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Reed K, Li A, Wilson B, Assamoi T. Enhancement of Ocular In Situ Gelling Properties of Low Acyl Gellan Gum by Use of Ion Exchange. J Ocul Pharmacol Ther 2016; 32:574-582. [PMID: 27611484 DOI: 10.1089/jop.2016.0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The purpose of this study was to determine if the addition of calcium gluconate to gellan solution results in a stronger gel structure on initial exposure to tear fluid due to the displacement of calcium from the gluconate ion by tear monovalent cations (Na+, K+). METHODS Test solutions of gellan and gellan-calcium gluconate were mixed thoroughly with simulated tear fluid (STF) at a 5:1 ratio. The resulting gel was measured for viscosity at 32°C-36°C. RESULTS The addition of optimized amounts of calcium gluconate to gellan formulations resulted in gellan-calcium gluconate-STF gels of higher strength (statistically significant) than when gellan alone was mixed with STF. Gellan experimental preparations demonstrated thixotropic behavior both before and after addition of STF. CONCLUSIONS It appears possible to enhance the initial in situ gel-forming properties of gellan by adding a divalent cation bound to an ion exchange molecule or resin. Optimal amounts of polyvinylpyrrolidone (PVP) appear to be effective in slowing timolol release when added to gellan and calcium gluconate solutions.
Collapse
Affiliation(s)
- Kenneth Reed
- Department of Pharmaceutical, Social and Administrative Sciences, Belmont University College of Pharmacy , Nashville, Tennessee
| | - Amy Li
- Department of Pharmaceutical, Social and Administrative Sciences, Belmont University College of Pharmacy , Nashville, Tennessee
| | - Britney Wilson
- Department of Pharmaceutical, Social and Administrative Sciences, Belmont University College of Pharmacy , Nashville, Tennessee
| | - Tetchi Assamoi
- Department of Pharmaceutical, Social and Administrative Sciences, Belmont University College of Pharmacy , Nashville, Tennessee
| |
Collapse
|
39
|
Shah KU, Shah SU, Dilawar N, Khan GM, Gibaud S. Thiomers and their potential applications in drug delivery. Expert Opin Drug Deliv 2016; 14:601-610. [PMID: 27548003 DOI: 10.1080/17425247.2016.1227787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Thiomers are the product of the immobilization of sulfhydryl-bearing ligands onto the polymer backbone of a conventional polymer, which results in a significant improvement in mucoadhesion; in situ gelation and efflux inhibition compare with unchanged polymers. Because of thiol groups, thiomers have more reactivity and enhanced protection against oxidation. Since the late 1990s, extensive work has been conducted on these promising polymeric excipients in the pharmaceutical field. Areas covered: This review covers thiomers, their classification and their different properties. Various techniques for the synthesis, purification and characterization of thiomers are described in detail. This review also encompasses their various properties such as mucoadhesion, permeation enhancement, in situ gelation and efflux inhibition, as well as different formulations based on thiomers. In addition to the use of thiomers as multifunctional excipients, this review also encompasses their use as drugs. Expert opinion: The synthesis is realized by linkage of sulfhydryl-bearing ligands but reported methods give low yields. Higher degrees of modification are not necessary and would probably lead to extreme changes in properties. Nevertheless, an accurate characterization of the final product is important. The scale-up procedure for industrial manufacturing has been adapted to produce GMP materials; Lacrimera® eye drops have already entered the European market.
Collapse
Affiliation(s)
- Kifayat Ullah Shah
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Shefaat Ullah Shah
- b Department of Pharmaceutics, Faculty of Pharmacy , Gomal University , D.I.Khan , Pakistan.,c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| | - Naz Dilawar
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Stéphane Gibaud
- c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| |
Collapse
|
40
|
Shukr MH. Novelin situgelling ocular inserts for voriconazole-loaded niosomes: design,in vitrocharacterisation andin vivoevaluation of the ocular irritation and drug pharmacokinetics. J Microencapsul 2016; 33:71-9. [DOI: 10.3109/02652048.2015.1128489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Patel S, Koradia H, Parikh R. Design and development of intranasal in situ gelling system of Midazolam hydrochloride using 32 full factorial design. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 2015; 128:322-330. [PMID: 25707750 DOI: 10.1016/j.colsurfb.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/25/2015] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Curcumin, a natural polyphenol compound, has been widely reported for diverse pharmacological effects and already been investigated for eye diseases. However, the water-insolubility of curcumin and the inherent penetration barriers in cornea make it difficult for curcumin to enter eye. This work aimed to develop ion-sensitive curcumin-loaded Pluronic P123 (P123)/D-a-tocopheryl polyethylene glycolsuccinate (TPGS) mixed micelle in situ gels (CUR-MM-ISGs) to prolong ocular retention time and improve cornea permeability. Central composite design-response surface methodology was applied for the optimization of curcumin-loaded P123/TPGS mixed micelles (CUR-MMs). Characterization tests showed that CUR-MMs were in spherical shape with small size and low critical micelle concentration. After dispersing the micelles in gellan gum solution (0.2%, w/w) at the ratio of 3:1 and 1:1 (v/v), respectively, CUR-MM-ISGs were formed and presented transparent appearance. Sustained release profile was obtained in vitro for both CUR-MM-ISGs (3:1 or 1:1, v/v). The irritation test proved that CUR-MM-ISGs as ophthalmic formulations were gentle and biocompatible towards ocular tissues. In addition, the ex vivo corneal penetration study indicated that the cumulative drug permeation amount of CUR-MM-ISGs (3:1, v/v) was respectively 1.16-fold and 1.32-fold higher than CUR-MM-ISGs (1:1, v/v) and curcumin solution. It can be concluded from these results that the developed ion-sensitive mixed micelle in situ gel system is a potential ophthalmic delivery carrier for curcumin as a poorly soluble drug.
Collapse
Affiliation(s)
- Yuwei Duan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Hongliang Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|
43
|
Yu S, Wang QM, Wang X, Liu D, Zhang W, Ye T, Yang X, Pan W. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm 2015; 480:128-36. [PMID: 25615987 DOI: 10.1016/j.ijpharm.2015.01.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 01/18/2015] [Indexed: 12/30/2022]
Abstract
This study was aimed to design a liposomal based ion-sensitive in situ ophthalmic delivery system of timolol maleate (TM). The TM liposome was produced by the reverse evaporation technique coupled with pH-gradients method (REVPR), and then was incorporated into deacetylated gellan gum gels. The TM liposome was demonstrated to be a round and uniform shape in TEM pictures. Compared with the TM eye drops, the TM liposome produced a 1.93 folds increase in apparent permeability coefficients (Papp), resulting in a significant increase of the corneal penetration. The TM-loaded liposome incorporated ion sensitive in situ gels (TM L-ISG) showed longer retention time on corneal surface compared with the eye drops using gamma scintigraphy technology. Draize testing showed that TM L-ISG was non-irritant for ocular tissues. The biggest efficacy of TM L-ISG occurred 30 min after eye drops administration, and efficacy disappeared after 240min. Then, compared with the eye drops, the optimal TM L-ISG could quickly reduce the intraocular pressure and the effective time was significantly longer (P≤0.05). These results indicate that liposome incorporated ion sensitive in situ gels have a potential ability for the opthalmic delivery.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xin Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China
| | - Wenji Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiantian Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
44
|
Abstract
INTRODUCTION Since thiolated polymers - known as thiomers - have entered the pharmaceutical arena in the late 1990 s, more and more academic and industrial research groups have started to work with these promising polymeric excipients. Meanwhile, various thiomers are the subject of clinical trials and the first product based on thiolated chitosan will reach the market in 2015. Due to the formation of disulfide bonds with mercaptopyridine substructures, thiol groups of thiomers are on the one hand more reactive and on the other hand are protected toward oxidation. These so-called preactivated thiomers representing the second generation of thiomers are subject of this review. AREAS COVERED Within this review, preactivated thiomers are classified and their mode of action is described. Furthermore, different synthetic pathways, purification and chemical characterization methods of preactivated thiomers are explained. Their properties including mucoadhesive, permeation-enhancing, efflux pump inhibitory and in situ gelling properties are described. In addition, various formulations based on preactivated thiomers are introduced. EXPERT OPINION The first-generation thiomers have already shown great potential resulting in various product developments. Preactivated thiomers - representing the second generation of thiomers - offer the additional advantage of even comparatively more reactive sulfhydryl ligands and of stability toward oxidation. According to this, they are promising novel polymeric excipients for various applications.
Collapse
Affiliation(s)
- Muhammad Ijaz
- University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Center for Molecular Bioscience (CMBI), Department of Pharmaceutical Technology , Innrain 80/82, 6020 Innsbruck , Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | | |
Collapse
|
45
|
Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Deliv 2015; 23:2363-2370. [DOI: 10.3109/10717544.2014.987333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rajesh Kesarla
- Department of Pharmaceutics, Parul Institute of Pharmacy, Vadodara, Gujarat, India and
| | - Tanvi Tank
- Department of Pharmaceutics, Parul Institute of Pharmacy, Vadodara, Gujarat, India and
| | | | - Tanvi Shah
- Department of Pharmaceutics, Parul Institute of Pharmacy, Vadodara, Gujarat, India and
| | - Sagar Parmar
- Department of Pharmaceutics, Parul Institute of Pharmacy, Vadodara, Gujarat, India and
| | - Abdelwahab Omri
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
46
|
de Souza CF, Riegel-Vidotti IC, Cardoso MB, Ono L, Lucyszyn N, Lubambo AF, Sens CV, Grein-Iankovski A, Sierakowski MR. Nanometric organisation in blends of gellan/xyloglucan hydrogels. Carbohydr Polym 2014; 114:48-56. [DOI: 10.1016/j.carbpol.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 02/09/2023]
|
47
|
El-Zahaby SA, Kassem AA, El-Kamel AH. Formulation and in vitro evaluation of size expanding gastro-retentive systems of levofloxacin hemihydrate. Int J Pharm 2014; 464:10-18. [PMID: 24472642 DOI: 10.1016/j.ijpharm.2014.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 02/07/2023]
Abstract
Size increasing (plug-type) levofloxacin hemihydrate (LVF) tablets for eradication of Helicobacter pylori (H. pylori) were prepared using in situ gel forming polymers including: gellan gum, sodium alginate, pectin and xanthan gum. Effect of cross-linkers: calcium and aluminum chloride, on the drug release was also studied. The prepared tablets were evaluated for their physicochemical parameters: weight variation, thickness, friability, hardness, drug content, water uptake and in vitro drug release. The optimized formula was subjected to further studies such as radial swelling test, FT-IR and DSC. Results revealed that LVF release depends not only on the nature of the matrix but also on the type of cross linker used to form this polymeric matrix. The addition of either calcium chloride or aluminum chloride, as cross-linkers, to gellan gum formulations significantly decreased drug release. Other polymers' formulations resulted in increased drug release upon addition of the same cross-linkers. The formula containing xanthan gum without any cross linker showed the most sustained LVF release with an increase in diameter with time, thus acting as a plug-type dosage form. IR spectra and DSC thermograms of LVF, xanthan gum, and a physical mixture of both, indicated that there was no interaction between the drug and the polymer and confirmed the drug stability.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy and Drug manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Abeer A Kassem
- Department of Pharmaceutics, Faculty of Pharmacy and Drug manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
48
|
In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today 2014; 19:400-12. [DOI: 10.1016/j.drudis.2013.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/26/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022]
|
49
|
El-Zahaby SA, Kassem AA, El-Kamel AH. Formulation and in vitro evaluation of size expanding gastro-retentive systems of levofloxacin hemihydrate. Int J Pharm 2014. [DOI: https://doi.org/10.1016/j.ijpharm.2014.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res 2013; 37:60-8. [PMID: 24197492 DOI: 10.1007/s12272-013-0280-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.
Collapse
|