1
|
Bai Y, Zhou Z, Zhao J, Ke Q, Pu F, Wu L, Zheng W, Chi H, Gong H, Zhou T, Xu P. The Draft Genome of Cryptocaryon irritans Provides Preliminary Insights on the Phylogeny of Ciliates. Front Genet 2022; 12:808366. [PMID: 35096020 PMCID: PMC8790277 DOI: 10.3389/fgene.2021.808366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yulin Bai
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Linni Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Zhou
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Affiliation(s)
- M Müller
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
3
|
Redondo MJ, Quiroga MI, Palenzuela O, Nieto JM, Alvarez-Pellitero P. Ultrastructural studies on the development of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot (Scophthalmus maximus L.). Parasitol Res 2003; 90:192-202. [PMID: 12783307 DOI: 10.1007/s00436-002-0810-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 11/26/2002] [Indexed: 12/01/2022]
Abstract
The ultrastructure of the developmental stages of Enteromyxum scophthalmi is described. Scarce intracellular, early uninucleated stages appeared within intestinal epithelial cells whereas proliferative stages were abundant both intraepithelially and in the intestinal lumen. In the proliferative stages, food reserves were abundant in the cytoplasm of P cells and consisted mostly of carbohydrates in the intraepithelial stages and lipid inclusions in the luminal stages. Sporogenesis could occur in enveloped cells or by direct division or clustering of generative cells. The abundance, shape and size of mitochondria as well as the number and shape of their cristae were very variable in the different developmental stages. The cristae were usually tubular and sometimes plate-like, discoidal or lamellar. True flat cristae were not observed. We found elements of closed (cryptomitosis) and open mitosis as well as structures reminiscent of microtubule organising centres, hitherto not described in myxosporeans. The significance of these findings is discussed in relation to the taxonomic and phylogenetic position of the Myxozoa.
Collapse
Affiliation(s)
- María J Redondo
- Instituto de Acuicultura Torre la Sal (CSIC), Ribera de Cabanes, 12595 Castellon, Spain
| | | | | | | | | |
Collapse
|
4
|
Schlegel M. Phylogeny of Eukaryotes recovered with molecular data: highlights and pitfalls. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Moreira D, Philippe H. Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 2001; 152:771-80. [PMID: 11763237 DOI: 10.1016/s0923-2508(01)01260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some eukaryotic groups carry out photosynthesis thanks to plastids, which are endosymbiotic organelles derived from cyanobacteria. Increasing evidence suggests that the plastids from green plants, red algae, and glaucophytes arose directly from a single common primary symbiotic event between a cyanobacterium and a phagotrophic eukaryotic host. They are therefore known as primary plastids. All other lineages of photosynthetic eukaryotes seem to have acquired their plastids by secondary or tertiary endosymbioses, which are established between eukaryotic algae, already containing plastids, and other eukaryotic hosts. Both primary and secondary symbioses have been followed by extensive plastid genome reduction through gene loss and gene transfer to the host nucleus. All this makes the reconstruction of the evolutionary history of plastids a very complex task, indissoluble from the resolution of the general phylogeny of eukaryotes.
Collapse
Affiliation(s)
- D Moreira
- Equipe Phylogénie, Bioinformatique et Génome, UMR CNRS 7622, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
6
|
Abstract
Resolving the order of events that occurred during the transition from prokaryotic to eukaryotic cells remains one of the greatest problems in cell evolution. One view, the Archezoa hypothesis, proposes that the endosymbiotic origin of mitochondria occurred relatively late in eukaryotic evolution and that several mitochondrion-lacking protist groups diverged before the establishment of the organelle. Phylogenies based on small subunit ribosomal RNA and several protein-coding genes supported this proposal, placing amitochondriate protists such as diplomonads, parabasalids, and Microsporidia as the earliest diverging eukaryotic lineages. However, trees of other molecules, such as tubulins, heat shock protein 70, TATA box-binding protein, and the largest subunit of RNA polymerase II, indicate that Microsporidia are not deeply branching eukaryotes but instead are close relatives of the Fungi. Furthermore, recent discoveries of mitochondrion-derived genes in the nuclear genomes of entamoebae, Microsporidia, parabasalids, and diplomonads suggest that these organisms likely descend from mitochondrion-bearing ancestors. Although several protist lineages formally remain as candidates for Archezoa, most evidence suggests that the mitochondrial endosymbiosis took place prior to the divergence of all extant eukaryotes. In addition, discoveries of proteobacterial-like nuclear genes coding for cytoplasmic proteins indicate that the mitochondrial symbiont may have contributed more to the eukaryotic lineage than previously thought. As genome sequence data from parabasalids and diplomonads accumulate, it is becoming clear that the last common ancestor of these protist taxa and other extant eukaryotic groups already possessed many of the complex features found in most eukaryotes but lacking in prokaryotes. However, our confidence in the deeply branching position of diplomonads and parabasalids among eukaryotes is weakened by conflicting phylogenies and potential sources of artifact. Our current picture of early eukaryotic evolution is in a state of flux.
Collapse
|
7
|
Abstract
The discipline of evolutionary protistology has emerged in the past 30 yr. There is as yet no agreed view of how protists are interrelated or how they should be classified. The foundations of a stable taxonomic superstructure for the protists and other eukaryotes lie in cataloging the diversity of the major monophyletic lineages of these organisms. The use of common patterns of cell organization (ultrastructural identity) seems to provide us with the most robust hypotheses of such lineages. These lineages are placed in 71 groups without identifiable sister taxa. These groups are here referred to as "major building blocks." For the first time, the compositions, ultrastructural identities, synapomorphies (where available), and subgroups of the major building blocks are summarized. More than 200 further lineages without clear identities are listed. This catalog includes all known major elements of the comprehensive evolutionary tree of protists and eukaryotes. Different approaches among protistologists to issues of nomenclature, ranking, and definitions of these groups are discussed, with particular reference to two groups-the stramenopiles and the Archezoa. The concept of "extended in-group" is introduced to refer to in-groups and the most proximate sister group and to assist in identifying the hierarchical location of taxa.
Collapse
|
8
|
Corliss JO. Annotated excerpts from Clifford Dobell's 88-year-old insightful classic paper, "The Principles of Protistology". Protist 1999; 150:85-98. [PMID: 10724521 DOI: 10.1016/s1434-4610(99)70011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
|
10
|
Struder-Kypke MC, Hausmann K. Ultrastructure of the heterotrophic flagellates Cyathobodo sp., Rhipidodendron huxleyi Kent, 1880, Spongomonas sacculus Kent, 1880, and Spongomonas sp. Eur J Protistol 1998. [DOI: 10.1016/s0932-4739(98)80007-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
|
12
|
Germot A, Philippe H, Le Guyader H. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 1997; 87:159-68. [PMID: 9247927 DOI: 10.1016/s0166-6851(97)00064-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.
Collapse
Affiliation(s)
- A Germot
- Laboratoire de Biologie comparée des Protistes (UPES A CNRS 6023), Université Clermont-Ferrand, Aubière, France.
| | | | | |
Collapse
|
13
|
Germot A, Philippe H, Le Guyader H. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci U S A 1996; 93:14614-7. [PMID: 8962101 PMCID: PMC26182 DOI: 10.1073/pnas.93.25.14614] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1996] [Accepted: 09/23/1996] [Indexed: 02/03/2023] Open
Abstract
Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.
Collapse
Affiliation(s)
- A Germot
- Laboratoire de Biologie comparée des Protistes, Centre National de la Recherche Scientifique, Université Clermont-Ferrand, Aubière, France
| | | | | |
Collapse
|