1
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
2
|
Venkatakrishnan A, Holzknecht ZE, Holzknecht R, Bowles DE, Kotzé SH, Modliszewski JL, Parker W. Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Comput Struct Biotechnol J 2021; 19:752-758. [PMID: 33552447 PMCID: PMC7829112 DOI: 10.1016/j.csbj.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/23/2023] Open
Abstract
Several factors in Western society, including widespread use of antibiotics, chronic inflammation, and loss of complex eukaryotic symbionts such as helminths, have a dramatic impact on the ecosystem of the gut, affecting the microbiota hosted there. In addition, reductions in dietary fiber are profoundly impactful on the microbiota, causing extensive destruction of the niche space that supports the normally diverse microbial community in the gut. Abundant evidence now supports the view that, following dramatic alterations in the gut ecosystem, microorganisms undergo rapid change via Darwinian evolution. Such evolutionary change creates functionally distinct bacteria that may potentially have properties of pathogens but yet are difficult to distinguish from their benign predecessors.
Collapse
Affiliation(s)
| | - Zoie E Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Rob Holzknecht
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sanet H Kotzé
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 8000, South Africa
| | - Jennifer L Modliszewski
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - William Parker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. Enzymatic, antimicrobial, and leishmanicidal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in Colombia. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00379. [PMID: 31641623 PMCID: PMC6796522 DOI: 10.1016/j.btre.2019.e00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 02/03/2023]
Abstract
Knowledge regarding new compounds, peptides, and/or secondary metabolites secreted by bacteria isolated from the intestine of phebotominae has the potential to control insect vectors and pathogens (viruses, bacteria, and parasites) transmitted by them. In this respect, twelve Gram-negative bacteria isolated from the intestine of Lutzomyia evansi were selected and screened for their enzymatic, antimicrobial, and leishmanicidal activity. E. cancerogenus, E. aerogenes, P. otitidis, E. cloacae, L. soli, and P. ananatis exhibited enzymatic activity. 83.3% of the isolates displayed lipolytic and nitrate reductase activity and 58.3% of the isolates displayed protease activity. Hemolytic activity (17%) was identified only in E. hormaechei, and P. ananatis. E. cancerogenus, A. calcoaceticus, and P. otitidis showed cellulolytic activity. A. gyllenbergii, P. aeruginosa, and E. hormaechei showed amylolytic activity. In general, the totality of methanolic extracts exhibited antimicrobial activity, where E. hormaechei, A. calcoaceticus, and E. cancerogenus presented the highest activity against the evaluated reference bacteria strains. Cell-free supernatants (CFSS) of the Gram-negative bacteria showed higher growth inhibitory activity against the reference Gram-positive bacteria. The CFS of A. gyllenbergii was the most active antimicrobial in this study, against S. aureus (AAODs = 95.12%) and E. faecalis (AAODs = 86.90%). The inhibition percentages of CFS against Gram-positive bacteria showed statistically significant differences (repeated measure ANOVA df= 2; F= 6.095; P= 0.007832). The E. hormaechei methanolic extract showed leishmanicidal activity (CE-50 μg/ml = 47.7 + 3.8) against metacyclic promastigotes of Leishmania braziliensis (UA301). Based on this finding, we discuss the possible implications of these bacteria in digestion and physiological processes in the Lu. evansi intestine. P. ananatis, E. cloacae, E. hormaechei, and P. otitidis were considered the most promising bacteria in this study and they could potentially be used for biological control.
Collapse
Affiliation(s)
- Rafael J. Vivero
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Gustavo Bedoya Mesa
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Sara M. Robledo
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, Medellín, Colombia, Laboratory 632, Medellín 050003, Colombia
| | - Claudia Ximena Moreno Herrera
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Sede Medellín, Colombia, Street 59 A # 63-20, Medellín 050003, Colombia
| |
Collapse
|
4
|
Zaatout N, Ayachi A, Kecha M, Kadlec K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. J Appl Microbiol 2019; 127:1305-1314. [PMID: 31356718 DOI: 10.1111/jam.14402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
AIMS This study was conducted to determine the occurrence of staphylococci from cows with subclinical mastitis from independent herds in Algeria, and to characterize Staphylococcus aureus isolates. METHODS AND RESULTS Quarter milk samples were collected separately, somatic cells were counted and samples with more than 200 000 somatic cells per ml were cultured on blood agar. Staphylococci isolates were identified by routine diagnostics, and S. aureus isolates were tested for antibiotic susceptibility by disk diffusion and microdilution. Congo red agar was used to detect biofilm formation and capsule synthesis was detected on serum soft agar (SSA). The S. aureus isolates were characterized by spa typing. DNA microarray analysis was performed to detect resistance and virulence genes. Overall, 40·0% (167/418) of the cows suffered from mastitis. In 63·5% (106/167) of the cows staphylococci were identified. Nine of the 106 Staphylococcus isolates (8·5%) were S. aureus. The coagulase-negative staphylococci belonged to 14 species. All S. aureus isolates were multiresistant and biofilm forming, with 66·67% of them showing diffuse colonies on SSA and belonged to CC97-agrI-cap5. Biofilm genes (icaA/C/D), 13 genes encoding for adhesion, six genes encoding proteases, 11 genes encoding superantigen like toxins were found. Genes conferring resistance to tetracycline (tet(K)), penicillin (blaZ/I/R) and macrolide-lincosamide-streptogramin B (erm(B), erm(A)) were also detected in the S. aureus from this study. CONCLUSIONS The current investigation provides a detailed molecular and biofilm formation ability of S. aureus involved in subclinical mastitis in Algeria and shows the wide distribution of adhesion and enterotoxin(-like) genes among S. aureus responsible for causing subclinical bovine mastitis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings are valuable in tracking the evolution and genomic variation of S. aureus from bovine origin.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - K Kadlec
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| |
Collapse
|
5
|
Rosales-Bravo H, Morales-Torres HC, Vázquez-Martínez J, Molina-Torres J, Olalde-Portugal V, Partida-Martínez LP. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles. J Appl Microbiol 2017; 123:1237-1250. [PMID: 28815819 DOI: 10.1111/jam.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022]
Abstract
AIMS Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. METHODS AND RESULTS We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. CONCLUSION The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY The identified consortium increases the functional potential of fermented dairy products.
Collapse
Affiliation(s)
- H Rosales-Bravo
- Laboratorio de Bioquímica Ecológica, Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico.,Laboratorio de Interacciones Microbianas, Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - H C Morales-Torres
- Laboratorio de Bioquímica Ecológica, Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - J Vázquez-Martínez
- Laboratorio de Fitobioquímica, Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - J Molina-Torres
- Laboratorio de Fitobioquímica, Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - V Olalde-Portugal
- Laboratorio de Bioquímica Ecológica, Departamento de Biotecnología y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - L P Partida-Martínez
- Laboratorio de Interacciones Microbianas, Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Coelho S, Pereira I, Soares L, Pribul B, Souza M. Short communication: Profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastitis in the state of Rio de Janeiro, Brazil. J Dairy Sci 2011; 94:3305-10. [DOI: 10.3168/jds.2010-3229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/20/2011] [Indexed: 11/19/2022]
|
7
|
Tao N, DePeters E, German J, Grimm R, Lebrilla C. Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J Dairy Sci 2009; 92:2991-3001. [DOI: 10.3168/jds.2008-1642] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Coelho SM, Reinoso E, Pereira IA, Soares LC, Demo M, Bogni C, Souza MM. Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in Rio de Janeiro. PESQUISA VETERINARIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000500002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was conducted to characterize pheno-genotypically the virulence factors and resistance pattern of Staphylococcus aureus isolates from milk samples of cows with subclinical mastitis. All hemolytic isolates presented beta-hemolysin, and 38% of the non-hemolytic isolates were able to express hemolysins in the presence of a beta-hemolytic strain. The amplification of the coa-gene displayed four different size polymorphisms with about 400 bp, 600 bp, 700 bp and 900 bp. The spaA gene that encodes the IgG-binding region of protein A revealed sizes of 700 bp and 900 bp. The amplification of region X from spaA yielded a single amplicon for each isolate with the prevalent amplicon size being of 180 bp. Amplification of sae gene yielded an amplicon size of 920 bp in 71% of the isolates. Antibiotic resistance pattern revealed that 42% S. aureus were susceptible to all antimicrobials tested. Seven different antibiotic patterns were observed. Our results indicated that 47% and 25% of S. aureus strains exhibited resistance to penicillin and oxacillin respectively. All oxacillin-resistant isolates were mecA-positive.
Collapse
Affiliation(s)
| | | | | | | | - Mirta Demo
- Universidad Nacional de Río Cuarto, Argentina
| | | | | |
Collapse
|