1
|
Firrincieli A, Tornatore E, Piacenza E, Cappelletti M, Saiano F, Pavia FC, Alduina R, Zannoni D, Presentato A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. CHEMOSPHERE 2024; 354:141712. [PMID: 38484991 DOI: 10.1016/j.chemosphere.2024.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Enrico Tornatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Filippo Saiano
- Department of Agricultural, Food and Forestry Sciences (SAAF), University of Palermo, Viale delle Scienze Ed. 4, 90128, Palermo, Italy.
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128, Palermo, Italy.
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| |
Collapse
|
2
|
Wang X, Luo S, Chen Y, Zhang R, Lei L, Lin K, Qiu C, Xu H. Potential of Miscanthus floridulus associated with endophytic bacterium Bacillus cereus BL4 to remediate cadmium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159384. [PMID: 36240921 DOI: 10.1016/j.scitotenv.2022.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation assisted by endophytic bacteria is promising to efficiently remediate cadmium (Cd) contaminated soil. Bacillus cereus BL4, isolated from Miscanthus floridulus growing around a pyrite mine, exhibited high Cd tolerance and plant growth-promoting traits and could improve Cd bioavailability in soil. As a result of the pot experiment, after inoculation with strain BL4, the fresh weight, height, and Cd accumulation of Miscanthus floridulus shoots increased by 19.08-32.26 %, 6.02-16.60 %, and 23.67 %-24.88 %, respectively, and roots increased by 49.38-56.41 %, 22.87-33.93 %, and 28.51 %-42.37 %, respectively. Under Cd stress, the chlorophyll content, photosynthetic rate, and root activity of Miscanthus floridulus increased, while the membrane permeability and malonaldehyde (MDA) content significantly decreased after the inoculation of BL4, which indicated the alleviation of the cytotoxicity of Cd. Accordingly, the glutathione (GSH) content increased, and the activities of antioxidant enzymes presented downward trends after BL4 inoculation. Cd bioavailability in soil increased after BL4 inoculation, accompanied by increases in the activities of soil enzymes (invertase, urease, alkaline phosphatase, dehydrogenase, FDA hydrolase, and catalase) as well as the richness and diversity of soil bacteria. Our findings revealed that strain BL4 might strengthen the phytoremediation of Cd by Miscanthus floridulus through its effects on plant physio-biochemistry and soil microecology, which provided a basis for the relative application to Cd-contaminated soil.
Collapse
Affiliation(s)
- Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yahui Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University, Department of Ecology and Environmental of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
3
|
Wang Y, Luo H, Peng H, Wang X, Xu F, Xu H. Coprinus comatus endophytic bacteria characteristics and mechanisms for the cadmium resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:584-593. [PMID: 34341927 DOI: 10.1007/s11356-021-15381-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Characteristics and resistant mechanisms of macro-fungus endophytic bacteria to cadmium (Cd) have not been well defined. Strains L1 and L3 with Cd-resistant capacity were isolated from the fruiting body of Coprinus comatus, which were identified as Bacillus sp. Under the stress of Cd, the morphologies of both L1 and L3 changed to reduce the threat of Cd. The results of Fourier Transform Infrared Spectrometry indicated that functional groups such as -OH, -COOH, and -NH2 participated in the Cd adsorption process. The contents of Cd adsorbed on the cell wall of L1 were 83.46-174.51% higher than that of L3. On the contrary, the contents of Cd accumulated in L1 cytoplasm were 38.77-74.77% lower than that of L3. As the level of Cd increased from 10 to 30 mg/L, the percentages of Cd distributed on the cell walls of L1 and L3 increased by 42.43% and 26.78%, respectively. The results also revealed that the contents of Cd absorbed by the sterilized strains L1 and L3 were 47.67-64.94% and 8.65-78.63% higher than that of living ones, respectively. In addition, the proline production of L1 was 23.75-109.68% higher than that of L3, while the malondialdehyde (MDA) production of L1 was 0.96-15.60% lower than that of L3. Thus, through the comparison of endophytic bacterial physiological responses, the possible characteristics and resistant mechanisms of macro-fungus endophytic bacteria under Cd stress were firstly reported.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - He Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Luo Y, Zeng G, Wu X, Wu B, Li X, Xu H. Characteristics and in situ remediation effects of heavy metal immobilizing bacteria on cadmium and nickel co-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110294. [PMID: 32044601 DOI: 10.1016/j.ecoenv.2020.110294] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/14/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) and nickel (Ni) in soil have caused serious environmental problems and increased healthy risks to humans and biota, it is vital important and necessary to develop effective methods to resolve the combined contaminated problems. In this study, strains L5 and L6 with good heavy metal resistant and immobilizing capacities were isolated from Cd and Ni contaminated soil. Bacterial characteristic experiment illustrated that many functional groups (-OH, -NH2 and -COO et al.) were distributed on the surface of L5 and L6. Under the stress of heavy metals, bacterial appearances were distorted. The pot experiment indicated that the concentrations of HOAc-extractable Cd and Ni in soil reduced 6.26-15.33% and 13.31-19.53% with the inoculation of L5 and L6. In addition, the immobilization rates on Cd and Ni improved 61.27-128.50% and 23.69-39.66% with re-inoculation of strains L5 and L6 at 30 days, respectively. After inoculation of strains L5 and L6 for 60 days, the activities of FDA hydrolysis, acid phosphatase, urease, invertase and dehydrogenase in soil increased obviously. Furthermore, bacterial diversity indexes and community structure of soil were also improved. Thus, given the beneficial remediation effects of the isolated strains, L5 and L6 have great potentials for heavy metals contaminated soil remediation.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xudong Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Bin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xue Li
- Chongqing University of Technology, Chongqing, 400054, China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Loni PC, Wu M, Wang W, Wang H, Ma L, Liu C, Song Y, H Tuovinen O. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121561. [PMID: 31740307 DOI: 10.1016/j.jhazmat.2019.121561] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/15/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, we demonstrate that a bacterial isolate Paraccocus versutus XT0.6 from the Xikuangshan antimony mine, the world largest antimony deposit, is capable of stibnite dissolution, oxidation of Sb(III), and formation of secondary Sb(V) bearing mineral. The isolate could oxidize dissolved Sb(III) aerobically and anaerobically. It was able to dissolve Sb(III) in solid minerals, which was subsequently oxidized to Sb(V) completely. Part of Sb(V) was scavenged by the formation of secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the biotic experiments. In contrast, Sb(III) released from mineral/rocks was only partially oxidized to Sb(V) and no secondary Sb-bearing mineral was formed in abiotic controls. These results demonstrated that microbial processes involved in the mobilization, oxidation, and transformation of antimony in minerals/rocks under ambient environmental conditions and offer new insights in biogeochemistry of Sb at mining areas.
Collapse
Affiliation(s)
- Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chaoyang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Kolhe N, Zinjarde S, Acharya C. Impact of uranium exposure on marine yeast, Yarrowia lipolytica: Insights into the yeast strategies to withstand uranium stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121226. [PMID: 31557712 DOI: 10.1016/j.jhazmat.2019.121226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
A marine yeast, Yarrowia lipolytica, was evaluated for morphological, physiological and biochemical responses towards uranium (U) exposure at pH 7.5. The yeast revealed biphasic U binding - a rapid biosorption resulting in ∼35% U binding within 15-30 min followed by a slow biomineralization process, binding up to ∼45.5% U by 24 h on exposure to 50 μM of uranyl carbonate. Scanning electron microscopy coupled with Energy Dispersive X-ray spectroscopy analysis of 24 h U challenged cells revealed the deposition of uranyl precipitates due to biomineralization. The loss of intracellular structures together with surface and subcellular localization of uranyl precipitates in 24 h U exposed cells were visualized by transmission electron microscopy. Cells treated with 50 μM U exhibited membrane permeabilization which was higher at 200 μM U. Enhanced reactive oxygen species (ROS) accumulation and lipid peroxidation, transient RNA degradation and protein oxidation were observed in U exposed cells. High superoxide dismutase levels coupled with uranium binding and bioprecipitation possibly helped in counteracting U stress in 50 μM U treated cells. Resistance to U toxicity apparently developed under prolonged uranyl (50 μM) incubations. However, cells could not cope up with toxicity at 200 μM U due to impairment of resistance mechanisms.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
7
|
Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111047. [PMID: 27792205 PMCID: PMC5129257 DOI: 10.3390/ijerph13111047] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.
Collapse
Affiliation(s)
- Muibat Omotola Fashola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Veronica Mpode Ngole-Jeme
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Private Bag X6 Florida, Roodepoort 1710, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
8
|
Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:1136-1147. [PMID: 26191988 DOI: 10.1080/10934529.2015.1047670] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.
Collapse
Affiliation(s)
- Aminur Rahman
- a Systems Biology Research Center, School of Bioscience, University of Skövde , Skövde , Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shamim K, Naik MM, Pandey A, Dubey SK. Isolation and identification of Aeromonas caviae strain KS-1 as TBTC- and lead-resistant estuarine bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:5243-5249. [PMID: 23132753 DOI: 10.1007/s10661-012-2940-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Tributyltin chloride (TBTC)- and lead-resistant estuarine bacterium from Mandovi estuary, Goa, India was isolated and identified as Aeromonas caviae strain KS-1 based on biochemical characteristics and FAME analysis. It tolerates TBTC and lead up to 1.0 and 1.4 mM, respectively, in the minimal salt medium (MSM) supplemented with 0.4 % glucose. Scanning electron microscopy clearly revealed a unique morphological pattern in the form of long inter-connected chains of bacterial cells on exposure to 1 mM TBTC, whereas cells remained unaltered in presence of 1.4 mM Pb(NO₃)₂ but significant biosorption of lead (8 %) on the cell surface of this isolate was clearly revealed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. SDS-PAGE analysis of whole-cell proteins of this lead-resistant isolate interestingly demonstrated three lead-induced proteins with molecular mass of 15.7, 16.9 and 32.4 kDa, respectively, when bacterial cells were grown under the stress of 1.4 mM Pb (NO₃)₂. This clearly demonstrated their possible involvement exclusively in lead resistance. A. caviae strain KS-1 also showed tolerance to several other heavy metals, viz. zinc, cadmium, copper and mercury. Therefore, we can employ this TBTC and lead-resistant bacterial isolate for lead bioremediation and also for biomonitoring TBTC from lead and TBTC contaminated environment.
Collapse
Affiliation(s)
- Kashif Shamim
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa 403206, India
| | | | | | | |
Collapse
|
10
|
Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles 2008; 12:279-84. [DOI: 10.1007/s00792-007-0128-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
11
|
Fulladosa E, Murat JC, Villaescusa I. Effect of cadmium(II), chromium(VI), and arsenic(V) on long-term viability- and growth-inhibition assays using Vibrio fischeri marine bacteria. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 49:299-306. [PMID: 16132421 DOI: 10.1007/s00244-004-0170-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 03/20/2005] [Indexed: 05/04/2023]
Abstract
As a complement to previous results obtained using the standard Microtox acute-toxicity test, which is based on measuring the rapid decrease of bioluminescence (5 to 30 minutes of exposure) in Vibrio fischeri bacteria in the presence of toxicants, the long-term effects of Cd(II), Cr(VI), and As(V) were studied on growth rate and viability assays of the same bacteria adapted to longer-lasting cultures, i.e., 48 or 72 hours instead of 5 or 30 minutes. Effects on viability or growth, as studied by establishing dose- and time-response curves, confirmed that these poisonous chemicals were not particularly toxic to these bacteria. Nevertheless, in the case of Cr(VI), the viability-inhibition assay appeared to be more sensitive than the Microtox acute-toxicity test. Interestingly, it was possible to observe a clear hormesis phenomenon, especially for Cd(II), under the conditions of both viability- and growth-inhibition assays.
Collapse
Affiliation(s)
- E Fulladosa
- Department of Chemical Engineering, University of Girona, Avda. Lluís Santaló, s/n, Girona, 17071, Spain
| | | | | |
Collapse
|