1
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
2
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
3
|
Li X, Liu D, Yao J. Aerosolization of fungal spores in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153003. [PMID: 35031366 DOI: 10.1016/j.scitotenv.2022.153003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Fungi in indoor environments can cause adverse health effects through inhalation and epidermal exposure. The risk of fungal exposure originates from the aerosolization of fungal spores. However, spore aerosolization is still not well understood. This paper provides a review of indoor fungal contamination, especially the aerosolization of fungal spores. We attempted to summarize what is known today and to identify what more information is needed to predict the aerosolization of fungal spores. This paper first reviews fungal contamination in indoor environments and HVAC systems. The detachment of fungal spores from colonies and the spore aerosolization principle are then summarized. Based on the above discussion, prediction methods for spore aerosolization are discussed. This review further clarifies the current situation and future efforts required to accurately predict spore aerosolization. This information is useful for forecasting and controlling the aerosolization of fungal spores.
Collapse
Affiliation(s)
- Xian Li
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China.
| | - Dan Liu
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| | - Jian Yao
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| |
Collapse
|
4
|
Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
|
6
|
Johns S, Davis CM, Money NP. Pulses in turgor pressure and water potential: resolving the mechanics of hyphal growth. Microbiol Res 1999. [DOI: 10.1016/s0944-5013(99)80019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|