1
|
Iwata T, Okumura Y, Okumura K, Horio T, Doi H, Takahashi K, Sawada K. Redox Sensor Array with 23.5-μm Resolution for Real-Time Imaging of Hydrogen Peroxide and Glutamate Based on Charge-Transfer-Type Potentiometric Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:7682. [PMID: 34833757 PMCID: PMC8618362 DOI: 10.3390/s21227682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Towards clarifying the spatio-temporal neurotransmitter distribution, potentiometric redox sensor arrays with 23.5-µm resolution were fabricated. The sensor array based on a charge-transfer-type potentiometric sensor comprises 128×128 pixels with gold electrodes deposited on the surface of pixels. The sensor output corresponding to the interfacial potential of the electrode changed logarithmically with the mixture ratio of K3Fe(CN)6 and K4Fe(CN)6, where the redox sensitivity reached 49.9 mV/dec. By employing hydrogen peroxidase as an enzyme and ferrocene as an electron mediator, the sensing characteristics for hydrogen peroxide (H2O2) were investigated. The analyses of the sensing characteristics revealed that the sensitivity was about 44.7 mV/dec., comparable to the redox sensitivity, while the limit of detection (LOD) was achieved to be 1 µM. Furthermore, the oxidation state of the electron mediator can be the key to further lowering the LOD. Then, by immobilizing oxidizing enzyme for H2O2 and glutamate oxidase, glutamate (Glu) measurements were conducted. As a result, similar sensitivity and LOD to those of H2O2 were obtained. Finally, the real-time distribution of 1 µM Glu was visualized, demonstrating the feasibility of our device as a high-resolution bioimaging technique.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
- Department of Electrical and Electronic Engineering, Toyama Prefectural University, Imizu 9390398, Japan
| | - Yuki Okumura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| | - Koichi Okumura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| | - Tomoko Horio
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| | - Hideo Doi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 4418580, Japan; (Y.O.); (K.O.); (T.H.); (H.D.); (K.T.); (K.S.)
| |
Collapse
|
2
|
Application of N-methyl-D-aspartate receptor nanopore in screening ligand molecules. Bioelectrochemistry 2020; 134:107534. [PMID: 32335354 DOI: 10.1016/j.bioelechem.2020.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are crucial for excitatory synaptic transmission in the central nervous system. To study NMDARs more accurately and conveniently, we developed a stable NMDAR nanopore in a planar lipid bilayer. Pharmacological properties were validated using the allosteric modulator Ro 25-6981 and antagonist D-2-amino-5-phosphonopentanoic acid (D-APV). The cyanotoxin β-N-methylamino-L-alanine (BMAA) found in fresh water systems is suspected to be associated with the development of neurodegenerative diseases. Therefore, BMAA and its two isomers L-2, 4-Diaminobutyric acid dihydrochloride (DAB) and N-(2-aminoethyl) glycine (AEG) and an endogenous excitotoxin, quinolinic acid (QA), were studied using the NMDAR nanopores to assess their effects on NMDAR modulation. We demonstrated that the NMDAR nanopore could reliably detect its ligand molecules at the single-channel level. The study also demonstrated the practicability of NMDAR nanopores, and results were validated using two-electrode voltage-clamp (TEVC) recording. Compared with TEVC recording, the NMDAR nanopores conducted ion channel gating at the single-channel level without being affected by other proteins on the cell membrane. The highly sensitive and accurate NMDAR nanopore technique thus has a unique advantage in screening NMDAR ligand molecules that could be associated with neurodegenerative disease.
Collapse
|
3
|
Sugawara M. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing. CHEM REC 2017; 18:433-444. [PMID: 29135061 DOI: 10.1002/tcr.201700046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022]
Abstract
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel-based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore-forming compounds. Channel-forming compounds, such as receptor ion-channels, channel-forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane-bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of chemistry, College of humanities and sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
4
|
Hirano-Iwata A, Aoto K, Oshima A, Taira T, Yamaguchi RT, Kimura Y, Niwano M. Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1949-1952. [PMID: 19799400 DOI: 10.1021/la902522j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the present study, we propose a method for preparing stable free-standing bilayer lipid membranes (BLMs). The BLMs were prepared in a microfabricated aperture with a smoothly tapered edge, which was prepared in a nanometer-thick Si(3)N(4) septum by the wet etching method. Owing to this structure, the stress on lipid bilayers at the contact with the septum was minimized, leading to remarkable membrane stability. The BLMs were not broken by applying a constant voltage of +/-1 V. The membrane lifetime was 15-45 h with and without an incorporated gramicidin channel. Gramicidin single-channel currents were recorded from the same BLM preparation when the aqueous solutions surrounding the BLM were repeatedly exchanged, demonstrating the tolerance of the present BLM to repetitive solution exchanges. Such stable membranes enable analysis of channel functions under various solution conditions from the same BLM, which will open up a variety of applications including a high throughput drug screening for ion channels.
Collapse
Affiliation(s)
- Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Hirano-Iwata A, Niwano M, Sugawara M. The design of molecular sensing interfaces with lipid-bilayer assemblies. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Thévenot DR, Toth K, Durst RA, Wilson GS. ELECTROCHEMICAL BIOSENSORS: RECOMMENDED DEFINITIONS AND CLASSIFICATION*. ANAL LETT 2007. [DOI: 10.1081/al-100103209] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniel R. Thévenot
- a Faculté de Sciences et de Technologie , Université Paris XII-Val de Marne , Centre d'Enseignement et de Recherche sur l'Eau, la Ville et l'Environnement (Cereve), 61 Avenue du Général de Gaulle, Créteil , Cedex , 94010 , France
| | - Klara Toth
- b Technical University of Budapest, Institute of General and Analytical Chemistry , Gellert ter 4, Budapest , H 1111 , Hungary
| | - Richard A. Durst
- c Department of Food Science and Technology , Cornell University , Geneva , NY , 14456-0462 , U.S.A
| | - George S. Wilson
- d Chemistry Department , Kansas University , Lawrence , KS , 66045 , U.S.A
| |
Collapse
|
7
|
Favero G, Campanella L, Cavallo S, D'Annibale A, Perrella M, Mattei E, Ferri T. Glutamate Receptor Incorporated in a Mixed Hybrid Bilayer Lipid Membrane Array, as a Sensing Element of a Biosensor Working under Flowing Conditions. J Am Chem Soc 2005; 127:8103-11. [PMID: 15926837 DOI: 10.1021/ja042904g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The realization of a reliable receptor biosensor requires stable, long-lasting, reconstituted biomembranes able to supply a suitable biomimetic environment where the receptor can properly work after incorporation. To this end, we developed a new method for preparing stable biological membranes that couple the biomimetic properties of BLMs (bilayer lipid membranes) with the high stability of HBMs (hybrid bilayer membranes); this gives rise to an innovative assembly, named MHBLM (mixed hybrid bilayer lipid membrane). The present work deals with the characterization of biosensors achieved by embedding an ionotropic glutamate receptor (GluR) on MHBLM. Thanks to signal (transmembrane current) amplification, which is typical of natural receptors, the biosensor here produced detects glutamate at a level of nmol L(-1). The transmembrane current changes linearly vs glutamate up to 100 nmol L(-1), while the limit of detection is 1 nmol L(-1). In addition, the biosensor response can be modulated both by receptor agonists (glycine) and antagonists (Mg(2+)) as well, and by exploiting the biosensor response, the distribution of different kinds of ionotropic GluR present in the purified sample, and embedded in MHBLM, was also evaluated. Finally, one of the most important aspects of this investigation is represented by the high stability of the biomimetic system, which allows the use of biosensor under flowing conditions, where the solutions flow on both biomembrane faces.
Collapse
Affiliation(s)
- Gabriele Favero
- Dipartimento di Chimica and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Università di Roma "La Sapienza", P.le Aldo Moro, 5-00185 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Chandler EL, Smith AL, Burden LM, Kasianowicz JJ, Burden DL. Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single-molecule optical and ensemble electrical recording. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:898-905. [PMID: 15773121 DOI: 10.1021/la035728i] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe a method for simultaneous single-molecule optical and electrical characterization of membrane-based sensors that contain ion-channel nanopores. The technique is used to study the specific and nonspecific interactions of streptavidin-capped DNA polymers with lipid bilayers composed of diphytanoyl phosphatidylcholine and diphytanoyl phosphatidylglycerol. Biotinylated DNA that is bound to fluorescently labeled streptavidin is electrophoretically driven into, or away from, the lumen of alpha hemolysin (alphaHL) ion channels by an external electric field. Confocal microscopy simultaneously captures single-molecule fluorescence dynamics from the membrane interface at different applied potentials. Fluorescence correlation analysis is used to determine the surface number density and diffusion constant of membrane-associated complexes. The dual optical and electrical approach can detect membrane-associated species at a surface coverage below 10(-5) monolayers of streptavidin, a sensitivity that surpasses most other in vitro surface analysis techniques. By comparing the change in transmembrane current to the number of fluorescent molecules leaving the bilayer when the electrical potential is reversed, we demonstrate the general utility of the approach within the context of nanopore-based sensing and discuss a mechanism by which DNA-streptavidin complexes can be nonspecifically retained at the membrane interface.
Collapse
Affiliation(s)
- Emily L Chandler
- Department of Chemistry, Wheaton College, Wheaton, Illinois 60187, USA
| | | | | | | | | |
Collapse
|
9
|
Hirano A, Wakabayashi M, Matsuno Y, Sugawara M. A single-channel sensor based on gramicidin controlled by molecular recognition at bilayer lipid membranes containing receptor. Biosens Bioelectron 2003; 18:973-83. [PMID: 12782460 DOI: 10.1016/s0956-5663(02)00219-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel ion-channel sensor based on a membrane bound receptor and a single gramicidin channel is described, in which the binding of an analyte to the membrane bound receptor modulates the single-channel activity of gramicidin. The sensor is composed of a planar bilayer lipid membrane (BLM) containing biotin-labeled phosphatidylethanolamine as receptor for avidin and gramicidin as signal transducer. When the receptor catches an analyte (avidin or ferritin-labeled avidin (FA)) at the membrane surface, the bilayer structure is locally distorted and the gramicidin monomer/dimer kinetics is modulated in a manner that the fraction of channel opening with a short lifetime ( < or = 100 ms) to the total opening events increases. The fraction was found to increase with the concentration of avidin from 1.0 x 10(-9) to 1.0 x 10(-6) M and of FA from 1.0 x 10(-9) to 1.0 x 10(-8) M. With dinitrophenyl-labeled PE embedded as receptor in the BLM for monoclonal anti-dinitrophenyl antibody (anti-DNP), the fraction of channel openings ( < or = 100 ms) increased with the concentration of anti-DNP from 2.0 x 10(-9) to 2.0 x 10(-7) g/ml. Bovine serum albumin (BSA) and anti-BSA antibody caused no changes in the channel opening. The possible mechanism of analyte-induced modulation of single-channel activity of gramicidin is also discussed.
Collapse
Affiliation(s)
- Ayumi Hirano
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | | | | | | |
Collapse
|
10
|
Hirano A, Namatame Y, Wakaizumi E, Matsuno Y, Sugawara M. Arachidonic acid-induced channel- and carrier-type ion transport across planar bilayer lipid membranes. ANAL SCI 2003; 19:191-7. [PMID: 12608744 DOI: 10.2116/analsci.19.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transmembrane ion transport by arachidonic acid (AA) through bilayer lipid membranes (BLMs) was investigated by means of electrochemical measurements to provide a basis for designing a sensor membrane. We found that AA induces a channel-type current, in addition to a carrier-type current, across planar BLMs. A linear relation between the logarithmic value of the AA concentration and the current responses (given as integrated currents) was observed for a carrier-type current, while a sigmoid relation was found for a channel-type current. Although AA transports Na+, Ca2+ and Mg2+ and exhibits ion selectivity between Na+ and Mg2+ for the carrier-type current, ion transport for the channel-type current was non-selective. It was found that ion transport via the channel mechanism occurs frequently for AA, while channel-type currents were only occasionally observed for y-linolenic acid and prostaglandin D2. No channel-type currents were induced by other fatty acids (oleic, linoleic, stearic, myristic, eicosapentanoic and docosahexanoic acids) and metabolites of AA (12-HETE and 5-HETE). The carrier-type ion transport occurs selectively to these compounds if the concentration is below 1.0 microM. These results suggest that AA selectively facilitates an ion flux through the BLMs, generating channel-type and/or carrier-type currents, which can be used as a measure of the AA concentration.
Collapse
Affiliation(s)
- Ayumi Hirano
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan
| | | | | | | | | |
Collapse
|
11
|
Subrahmanyam S, Piletsky SA, Turner APF. Application of natural receptors in sensors and assays. Anal Chem 2002; 74:3942-51. [PMID: 12199559 DOI: 10.1021/ac025673+] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosensors are analytical devices that use a biological or biologically derived material immobilized at a physicochemical transducer to measure one or more analytes. Although there are a large number of reviews on biosensors in general, there has been little systematic information presented on the application of natural receptors in sensor technology. This perspective discusses broadly the fundamental properties of natural receptors, which make them an attractive option for use as biorecognition elements in sensor technology. It analyses the current situation by reference to typical examples, such as the application of nicotinic acetylcholine receptor and G protein-linked receptors in affinity sensors and analyses the problems that need to be resolved prior to any commercialization of such devices.
Collapse
Affiliation(s)
- Sreenath Subrahmanyam
- Institute of BioScience and Technology, Cranfield University at Silsoe, Bedfordshire, UK
| | | | | |
Collapse
|
12
|
Umezawa Y, Ozawa T, Sato M. Probing Chemical Processes in Living Cells: Applications for Assay and Screening of Chemicals that Disrupt Cellular Signaling Pathways. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.1423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Umezawa Y, Ozawa T, Sato M. Methods of analysis for chemicals that promote/disrupt cellular signaling. ANAL SCI 2002; 18:503-16. [PMID: 12036116 DOI: 10.2116/analsci.18.503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methods of analysis were presented for chemicals that promote or disrupt cellular signaling pathways. The developed analytical methods are based not only on receptor binding, but also on the following known molecular-level processes involved in signal transduction along signaling pathways, reconstituted in vitro or taken in part in living cells. The methods were discussed in relation to receptor binding assay and/or bioassay. Examples include: (1) Insulin signaling pathways; (1-i) Chemical selectivity of agonists for insulin signaling pathways based on agonist-induced phosphorylation of a target peptide; (1-ii) An SPR-based screening method for agonist selectivity for insulin signaling pathways based on the binding of phosphotyrosine to its specific binding protein; (1-iii) A fluorescent indicator for tyrosine phosphorylation-based insulin signaling pathways; (2) An optical method for evaluating ion selectivity for calcium signaling pathways in the cell; (3) Assay and screening of chemicals that disrupt cellular signaling pathways, potential endocrine disruptors in particular; (4) Protein conformational changes, and (5) A screening method for antigen-specific IgE using mast cells, based on intracellular calcium signaling.
Collapse
Affiliation(s)
- Yoshio Umezawa
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo, Japan.
| | | | | |
Collapse
|
14
|
Sugawara M, Hirano A, Bühlmann P, Umezawa Y. Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2002. [DOI: 10.1246/bcsj.75.187] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Affiliation(s)
- Masao SUGAWARA
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | - Ayumi Hirano
- Department of Physics and Applied Physics, College of Humanities and Sciences, Nihon University
| |
Collapse
|
16
|
Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 2001; 16:121-31. [PMID: 11261847 DOI: 10.1016/s0956-5663(01)00115-4] [Citation(s) in RCA: 639] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission 1.7 on Biophysical Chemistry formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry) have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors: these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device that is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration, should be designated a single use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, to the mode of physico-chemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with macromolecules that have been isolated, engineered or present in their original biological environment. In the latter cases. equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes; alternatively, an indirect monitoring of inhibitor or activator of the biological recognition element (biochemical receptor) may be achieved. A rapid proliferation of biosensors and their diversity has led to a lack of rigour in defining their performance criteria. Although each biosensor can only truly be evaluated for a particular application, it is still useful to examine how standard protocols for performance criteria may be defined in accordance with standard IUPAC protocols or definitions. These criteria are recommended for authors. referees and educators and include calibration characteristics (sensitivity, operational and linear concentration range, detection and quantitative determination limits), selectivity, steady-state and transient response times, sample throughput, reproducibility, stability and lifetime.
Collapse
Affiliation(s)
- D R Thévenot
- Centre d'Enseignement et de Recherche sur l'Eau, la Ville et l'Environnement (Cereve), Faculté de Sciences et de Technologie, Université Paris XII-Val de Marne, Créteil, Paris, France.
| | | | | | | |
Collapse
|
17
|
Hirano A, Wakabayashi M, Sugawara M, Uchino S, Nakajima-Iijima S. Evaluation and comparison of ion permeation and agonist selectivities for N-methyl-d-aspartate receptor channels with different subunit compositions in bilayer lipid membranes based on integrated single-channel currents. Anal Biochem 2000; 283:258-65. [PMID: 10906247 DOI: 10.1006/abio.2000.4650] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To quantify the ion-permeation ability of the recombinant epsilon1-4/zeta1 channel activated by agonists, the magnitude of agonist-induced integrated single-channel currents for the epsilon2-4/zeta1 N-methyl-d-aspartate (NMDA) channels in bilayer lipid membranes (BLMs) was evaluated electrochemically based on the single-channel recordings. The recombinant epsilon2-4/zeta1 channels were purified from Chinese hamster ovary cells expressing each channel and incorporated in BLMs formed by the tip-dip method. Three typical agonists, l-glutamate, NMDA, and (2S, 3R, 4S) isomer of 2-(carboxycyclopropyl)glycine (l-CCG-IV), were investigated at a concentration of 50 microM. The magnitude of l-glutamate-induced integrated current was found to depend on the epsilon-subunit composition and to increase in the order of epsilon2/zeta1 > epsilon1/zeta1 approximately epsilon4/zeta1 > epsilon3/zeta1, which differs from that of the reported binding affinities (EC(50)) between l-glutamate and each channel type. On the other hand, the magnitude of the integrated currents induced by NMDA and l-CCG-IV did not vary among the four channel types. The order of agonist selectivity toward the epsilon2-4/zeta1 channels in terms of the magnitude of the integrated current was l-glutamate > l-CCG-IV approximately NMDA for the epsilon2/zeta1 channel, l-CCG-IV > NMDA > l-glutamate for the epsilon3/zeta1 channel, and l-CCG-IV approximately l-glutamate > NMDA for the epsilon4/zeta1 channel, suggesting that the agonist selectivity also depends on the epsilon-subunit composition. The present study shows that each epsilon1-4/zeta1 channel has its own ability of ion permeation, i.e., its own signal transduction ability, which is not parallel to its binding ability.
Collapse
Affiliation(s)
- A Hirano
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | | | | | | | | |
Collapse
|
18
|
Hirano A, Sugawara M, Umezawa Y, Uchino S, Nakajima-Iijima S. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents. Biosens Bioelectron 2000; 15:173-81. [PMID: 11286335 DOI: 10.1016/s0956-5663(00)00058-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.
Collapse
Affiliation(s)
- A Hirano
- Department of Chemistry, School of Science, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Yoshida T, Sato M, Ozawa T, Umezawa Y. An SPR-based screening method for agonist selectivity for insulin signaling pathways based on the binding of phosphotyrosine to its specific binding protein. Anal Chem 2000; 72:6-11. [PMID: 10655627 DOI: 10.1021/ac990795w] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new screening method was developed that evaluates physiologically relevant chemical selectivity of agonists for insulin-signaling pathways. Phosphorylation (pY939) by an insulin-activated insulin receptor of a target peptide (Y939) derived from an insulin receptor substrate-1 (IRS-1) and its subsequent binding to another downstream target, the SH2 domain of PI-3 kinase (SH2N), were detected by surface plasmon resonance (SPR) spectrometry. This method is based on competitive binding of SH2N to pY939 either in a solution or on the gold surface of the SPR sensor chip. With increasing the concentration of pY939 in solution by the insulin-induced kinase reaction of insulin receptor, SH2N bound to pY939 in solution increases and the one on the sensor chip decreases, thereby causing a decrease in the SPR signal. The amount of thus-detected complex pY939-SH2N was found to depend on added insulin concentrations, confirming that the method utilized part of the sequential transduction mechanism of the insulin-signaling pathways. The kinase activity of insulin receptor-agonist complexes increased in the order of IGF-II < IGF-I < insulin, and neither vanadium ions nor thiazolidine-type medicines for NIDDM, troglitazone and pioglitazone, directly acted on both the kinase reaction of insulin receptor or the binding of pY939 to SH2N. The present approach will thus become a general method for screening agonists for one specific pathway in tyrosine phosphorylation of IRS-1 in insulin signaling, which is regulated by specific protein-protein interaction between a phosphorylated tyrosine in IRS-1 and its corresponding SH2 domain-containing protein such as PI-3 kinase, Grb2-Sos, or SHP2.
Collapse
Affiliation(s)
- T Yoshida
- Department of Chemistry, School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Radecka H, Nakanishi J, Hirano A, Sugawara M, Umezawa Y. A method for evaluating chemical selectivity of agonists for glutamate receptor channels incorporated in liposomes based on an agonist-induced ion flux measured by ion-selective electrodes. J Pharm Biomed Anal 1999; 19:205-16. [PMID: 10698582 DOI: 10.1016/s0731-7085(98)00146-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method for evaluating chemical selectivity of agonists for the NMDA subtype of glutamate receptor (GluR) channels is described. The method is based on the magnitude of Ca2+ release from GluR-incorporated liposomes, which is measured by a Ca2+ ion-selective electrode with a thin-layer mode. The partially purified GluRs from rat whole brain were reconstituted into Ca2+-loaded liposomes. Small aliquots (each 50 microl) of the proteoliposomes, in the presence of an antagonist DNQX for blocking non-NMDA subtype, were subjected to potentiometric measurements of Ca2+ release under stimulation by three kinds of agonists, i.e. NMDA, L-glutamate and L-CCG-IV. The amount of the Ca2+ ion flux through the GluR channel induced by the agonists was found to increase in the order of NMDA < L-glutamate < L-CCG-IV, which was consistent with that of binding affinity of the agonists toward the NMDA subtype. However, the range of selectivity of the relevant agonists was much smaller compared with results based on binding affinities. The present method provides physiologically more relevant values for the agonist selectivity of GluRs as compared to that of the conventional binding assay in the sense that the selectivity is based on the very magnitude of Ca2+ flux through the NMDA receptor, i.e. the extent of signal transduction by a given agonist. The evaluation of agonist selectivity based on Na+ release was also investigated by using a Na+ ion-selective electrode, but agonist-induced Na+ release was not detected, because of low permeability of Na+ through the NMDA subtype.
Collapse
Affiliation(s)
- H Radecka
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Japan
| | | | | | | | | |
Collapse
|
21
|
Bühlmann P, Aoki H, Xiao KP, Amemiya S, Tohda K, Umezawa Y. Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. ELECTROANAL 1998. [DOI: 10.1002/(sici)1521-4109(199811)10:17<1149::aid-elan1149>3.0.co;2-n] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ozawa T, Sato M, Sugawara M, Umezawa Y. An assay method for evaluating chemical selectivity of agonists for insulin signaling pathways based on agonist-induced phosphorylation of a target peptide. Anal Chem 1998; 70:2345-52. [PMID: 9624906 DOI: 10.1021/ac971192s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An optical method for evaluating the physiologically relevant agonist and antagonist selectivity of an insulin signaling pathway based on an insulin-dependent on/off switching of phosphorylation of a target peptide via insulin receptor is described. Insulin receptor serves as a binding for insulin and a given insulin receptor-binding peptide as a target for an insulin-receptor complex. Upon binding of insulin to its receptor, the insulin receptor undergoes autophosphorylation which enables the receptor to have a kinase activity and phosphorylate various substrates. The phosphorylated tyrosine in the substrate was measured with a monoclonal anti-phosphotyrosine antibody. As the target substrate for insulin receptor, a Y939 peptide consisting of 12 amino acid residues derived from insulin receptor substrate 1 (IRS-1) was used. The present assay method involves different sequential steps: (1) immobilization of a biotin-coupled Y939 peptide on an avidin coated 96-well plate via biotin-avidin complexation; (2) insulin-dependent phosphorylation of the Y939 peptide by the insulin receptor; (3) enzymatic reaction and absorptiometric assay of the phosphorylated Y939 peptide using the anti-phosphotyrosine antibody labeled with horseradish peroxidase. An insulin-dependent absorbance was observed for insulin concentrations from 1.0 x 10(-10) to 1.0 x 10(-7) M, and it leveled off. The observed absorbance was explained to be due to an increase in the phosphorylated Y939 peptide caused by insulin and its receptor complexation. No signal was, however, induced by both vanadyl and vanadate ions at concentrations up to 1.0 x 10(-4) M; these results and previous intact cell level data taken together led to the conclusion that these ions did not induce phosphorylation of the Y939 peptide. Upon addition of tyrphostin 25, a specific inhibitor for insulin receptor kinase activity, phosphorylation of the Y939 peptide in the presence of 1.0 microM insulin was competitively inhibited over 1.0 x 10(-4) M tyrphostin 25. The present system thus exhibited "physiologically more relevant" agonist and antagonist selectivity, the principle of which is based in part on the insulin signal transduction rather than simply relying on the binding assay. The potential use of the present method for evaluating the selectivity of a wide range of agonists and antagonists toward the insulin signaling pathways is discussed.
Collapse
Affiliation(s)
- T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- James L. Anderson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556
| | - Louis A. Coury
- Bioanalytical Systems Inc., 2701 Kent Avenue, West Lafayette, Indiana 47906-1382
| | - Johna Leddy
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
24
|
Abstract
This mini-review describes our recent approach of mimicking transmembrane and intracellular signalings displayed by various receptors in biomembranes for the development of new sensing membranes. Several important modes of receptor signaling have been utilized exploiting bio and synthetic receptors; (i) Ca2+ signaling by calmodulin, (ii) active transport of target and relevant compounds displayed by Na+/D-glucose cotransporter and Na+,K(+)-ATPase, (iii) membrane permeability changes induced by glutamate receptor ion channel proteins and (iv) membrane potential changes induced by synthetic receptors. The newly designed sensing systems are demonstrated and discussed in terms of their novel mode of signal transduction, sensitivity and selectivity.
Collapse
Affiliation(s)
- M Sugawara
- Department of Chemistry, School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|