1
|
Vieira D, Esteves S, Santiago C, Conde-Sousa E, Fernandes T, Pais C, Soares P, Franco-Duarte R. Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms 2020; 8:E1001. [PMID: 32635509 PMCID: PMC7409325 DOI: 10.3390/microorganisms8071001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/30/2023] Open
Abstract
The study of mitogenomes allows the unraveling of some paths of yeast evolution that are often not exposed when analyzing the nuclear genome. Although both nuclear and mitochondrial genomes are known to determine phenotypic diversity and fitness, no concordance has yet established between the two, mainly regarding strains' technological uses and/or geographical distribution. In the current work, we proposed a new method to align and analyze yeast mitogenomes, overcoming current difficulties that make it impossible to obtain comparable mitogenomes for a large number of isolates. To this end, 12,016 mitogenomes were considered, and we developed a novel approach consisting of the design of a reference sequence intended to be comparable between all mitogenomes. Subsequently, the population structure of 6646 Saccharomyces cerevisiae mitogenomes was assessed. Results revealed the existence of particular clusters associated with the technological use of the strains, in particular regarding clinical isolates, laboratory strains, and yeasts used for wine-associated activities. As far as we know, this is the first time that a positive concordance between nuclear and mitogenomes has been reported for S. cerevisiae, in terms of strains' technological applications. The results obtained highlighted the importance of including the mtDNA genome in evolutionary analysis, in order to clarify the origin and history of yeast species.
Collapse
Affiliation(s)
- Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Soraia Esteves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Carolina Santiago
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Eduardo Conde-Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- CMUP—Centro de Matemática da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ticiana Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (D.V.); (S.E.); (C.S.); (E.C.-S.); (T.F.); (C.P.); (P.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Joly P, Vignaud H, Di Martino J, Ruiz M, Garin R, Restier L, Belmalih A, Marchal C, Cullin C, Arveiler B, Fergelot P, Gitler AD, Lachaux A, Couthouis J, Bouchecareilh M. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency. PLoS One 2017; 12:e0179369. [PMID: 28617828 PMCID: PMC5472284 DOI: 10.1371/journal.pone.0179369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. METHODS We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. RESULTS Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. CONCLUSION This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis.
Collapse
Affiliation(s)
- Philippe Joly
- University Lyon - University Claude Bernard Lyon 1 - EA 7424 – Inter-university Laboratory of Human Movement Science, Villeurbanne, France
- Laboratoire de Biochimie et biologie moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Hélène Vignaud
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Julie Di Martino
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Mathias Ruiz
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Roman Garin
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Lioara Restier
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Abdelouahed Belmalih
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Christelle Marchal
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Christophe Cullin
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Benoit Arveiler
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Patricia Fergelot
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alain Lachaux
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marion Bouchecareilh
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
- * E-mail:
| |
Collapse
|
3
|
Lipinski KA, Kaniak-Golik A, Golik P. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1086-98. [PMID: 20056105 DOI: 10.1016/j.bbabio.2009.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | |
Collapse
|
4
|
A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae. BMC Genomics 2009; 10:524. [PMID: 19917080 PMCID: PMC2784802 DOI: 10.1186/1471-2164-10-524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 11/15/2009] [Indexed: 12/22/2022] Open
Abstract
Background The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism) to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4). Results We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. Conclusion We have undertaken a whole genome approach in order to further understand the mechanism(s) regulating the cell's toxicity to nickel compounds. We have used computational methods to integrate the data and generate global models of the yeast's cellular response to NiSO4. The results of our study shed light on molecular pathways associated with the cellular response of eukaryotic cells to nickel compounds and provide potential implications for further understanding the toxic effects of nickel compounds to human cells.
Collapse
|
5
|
Zhou X, Arita A, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz AD, Klein CB, Dai W, Begley TJ, Costa M. A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity. Genomics 2009; 94:294-307. [PMID: 19631266 PMCID: PMC2763962 DOI: 10.1016/j.ygeno.2009.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/17/2009] [Accepted: 07/15/2009] [Indexed: 11/30/2022]
Abstract
We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4733 haploid S. cerevisiae single-gene-deletion mutants to identify those that have decreased or increased growth, relative to wild type, after exposure to sodium arsenite (NaAsO(2)). IC(50) values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite-toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging.
Collapse
Affiliation(s)
- Xue Zhou
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Adriana Arita
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Thomas P. Ellen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Xin Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Jingxiang Bai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - John P. Rooney
- Department of Biomedical Sciences, Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany–State University of New York, 1 Discovery Drive, Rensselaer, New York, 12144 USA
| | - Adrienne D. Kurtz
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Catherine B. Klein
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Wei Dai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Thomas J. Begley
- Department of Biomedical Sciences, Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany–State University of New York, 1 Discovery Drive, Rensselaer, New York, 12144 USA
| | - Max Costa
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| |
Collapse
|
6
|
Gotea V, Ovcharenko I. DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res 2008; 36:W133-9. [PMID: 18487623 PMCID: PMC2447744 DOI: 10.1093/nar/gkn300] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression in eukaryotic genomes is established through a complex cooperative activity of proximal promoters and distant regulatory elements (REs) such as enhancers, repressors and silencers. We have developed a web server named DiRE, based on the Enhancer Identification (EI) method, for predicting distant regulatory elements in higher eukaryotic genomes, namely for determining their chromosomal location and functional characteristics. The server uses gene co-expression data, comparative genomics and profiles of transcription factor binding sites (TFBSs) to determine TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is its ability to detect REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs and it also scores the association of individual transcription factors (TFs) with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data. The DiRE web server is freely available at http://dire.dcode.org.
Collapse
Affiliation(s)
| | - Ivan Ovcharenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894
| |
Collapse
|
7
|
Vujcic M, Shroff M, Singh KK. Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae. Cancer Res 2007; 67:9740-9. [PMID: 17942904 DOI: 10.1158/0008-5472.can-07-1962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used yeast Saccharomyces cerevisiae as a tool to identify the importance of mitochondrial processes involved in arsenic-induced carcinogenicity in humans. We screened 466 single-gene knockout strains of yeast S. cerevisiae known to be involved in biogenesis of mitochondria for sodium arsenite (AsIII) and sodium arsenate (AsV) sensitivity. We identified 72 arsenite-sensitive and 81 arsenate-sensitive mutants. We categorized the identified mutants based on the various mitochondrial processes, including nucleic acid metabolism, oxidative phosphorylation, protein synthesis, and vacuolar acidification. We have identified 65 human orthologues to proteins involved in arsenite sensitivity and 3 human orthologues to arsenite resistance. Furthermore, 23 human orthologues to arsenate sensitivity and 20 human orthologues to arsenate-resistant proteins, including MSH3, COX10, GCSH, PPOX, and MTHFD1, were also identified. Using PathwayAssist software, we did cellular network analysis between identified mitochondrial proteins. Three types of interactions, (a) protein-protein interactions, (b) common transcriptional regulators, and (c) common target genes, were identified. We found that RTG (retrograde) genes involved in mitochondria-to-nucleus signaling regulate both arsenite sensitivity and resistance. Furthermore, our study revealed that ABF1, a multifunctional transcriptional factor, regulates genes involved in both arsenite and arsenate sensitivity and resistance. However, REB1 and RAP1 transcriptional regulators were common to only arsenate- and arsenite-sensitive genes, respectively. These studies indicate that multiple pathways involved in mitochondrial biogenesis protect yeast S. cerevisiae from arsenic-induced toxicity. Together, our studies suggest that evolutionary conserved mitochondrial networks identified in yeast S. cerevisiae must play an important role in arsenic-induced carcinogenesis in humans.
Collapse
Affiliation(s)
- Marija Vujcic
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
8
|
Abstract
In recent years the facile, yet powerful, genetics of the baker's yeast Saccharomyces cerevisiae has been appropriated for the study of amyloid toxicity. Several models of amyloid toxicity using this simple eukaryotic organism have been developed that faithfully recapitulate many disease-relevant phenotypes. Furthermore, these models have been exploited in genetic screens that have provided insight into conserved mechanisms of amyloid toxicity and identified potential therapeutic targets for disease. In this chapter, we discuss the strengths and weaknesses of yeast models of amyloid toxicity and how experiments with these models may be relevant to amyloid disorders. We suggest approaches for development of new yeast models of amyloid toxicity and provide an overview of screening protocols for genetic modifiers of amyloid toxicity by both random and systematic approaches.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Genetics, Univeristy of Leicester, Leicester, United Kingdom LE1 7RH
| | | |
Collapse
|
9
|
Teixeira MT, Dujon B, Fabre E. Genome-wide nuclear morphology screen identifies novel genes involved in nuclear architecture and gene-silencing in Saccharomyces cerevisiae. J Mol Biol 2002; 321:551-61. [PMID: 12206772 DOI: 10.1016/s0022-2836(02)00652-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organisation of the cell nucleus is crucial for the regulation of gene expression but little is known about how nuclei are structured. To address this issue, we designed a genomic screen to identify factors involved in nuclear architecture in Saccharomyces cerevisiae. This screen is based on microscopic monitoring of nuclear pore complexes and nucleolar proteins fused with the green fluorescent protein in a collection of approximately 400 individual deletion mutants. Among the 12 genes identified by this screen, most affect both the nuclear envelope and the nucleolar morphology. Corresponding gene products are localised preferentially to the nucleus or close to the nuclear periphery. Interestingly, these nuclear morphology alterations were associated with chromatin-silencing defects. These genes provide a molecular context to explore the functional link between nuclear architecture and gene silencing.
Collapse
Affiliation(s)
- Maria Teresa Teixeira
- Département de Structure et Dynamique des Génomes, Unité de Génétique Moléculaire des Levures, URA 2171 CNRS and UFR 927 Univ. P. M Curie, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Cedex 15, Paris, France
| | | | | |
Collapse
|
10
|
Kuznetsov VA, Knott GD, Bonner RF. General statistics of stochastic process of gene expression in eukaryotic cells. Genetics 2002; 161:1321-32. [PMID: 12136033 PMCID: PMC1462190 DOI: 10.1093/genetics/161.3.1321] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations.
Collapse
Affiliation(s)
- V A Kuznetsov
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development/NIH, Bldg. 13, Rm. 3W16, Bethesda, MD 20892-5772, USA.
| | | | | |
Collapse
|
11
|
Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002; 1:153-61. [PMID: 12120097 DOI: 10.1038/nrd728] [Citation(s) in RCA: 1373] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Biological Chemistry Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
12
|
Abstract
Understanding the biology of complex systems is facilitated by comparing them with simpler organisms. Budding and fission yeasts provide ideal model systems for eukaryotic cell biology. Although they differ from one another in terms of a range of features, these yeasts share powerful genetic and genomic tools. Classical yeast genetics remains an essential element in discovering and characterizing the genes that make up a eukaryotic cell.
Collapse
Affiliation(s)
- S L Forsburg
- Molecular and Cell Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
13
|
Abstract
The completion of the Arabidopsis thaliana (mustard weed) genome sequence constitutes a major breakthrough in plant biology. It will revolutionize how we answer questions about the biology and evolution of plants as well as how we confront and resolve world-wide agricultural problems.
Collapse
Affiliation(s)
- A Theologis
- Plant Gene Expression Center, Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
14
|
Current awareness on yeast. Yeast 2001; 18:577-84. [PMID: 11284013 DOI: 10.1002/yea.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447213 DOI: 10.1002/cfg.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|