1
|
Steroid modification by filamentous fungus Drechslera sp.: Focus on 7-hydroxylase and 17β-hydroxysteroid dehydrogenase activities. Fungal Biol 2021; 126:91-100. [PMID: 34930562 DOI: 10.1016/j.funbio.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Fungal strain Drechslera sp. Ph F-34 was shown to modify 3-oxo- and 3-hydroxy steroids of androstane series to form the corresponding allylic 7-alcohols and 17β-reduced derivatives thus evidencing the presence of 7α-, 7β-hydroxylase and 17β-hydroxysteroid dehydrogenase (17β-HSD) activities. The growing mycelium predominantly hydroxylated androsta-1,4-diene-3,17-dione (ADD) at the 7β-position, while much lower 7α-hydroxylation was observed. Along with 7β-hydroxy-ADD and its corresponding 7α-isomer, their respective 17β-alcohols were produced. In this study, transformation of ADD, androst-4-en-17β-ol-3-one (testosterone, TS) and 3β-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA) by resting mycelium of Drechslera sp. have been estimated in different conditions with regard to the inducibility and functionality of the 17β-HSD and 7-hydroxylase enzyme systems. Steroids of androstane, pregnane and cholane series were evaluated as inducers. The inhibitory analysis was provided using cycloheximide (CHX). Steroids were assayed using TLC and HPLC methods, and the structures were confirmed by mass-spectrometry, 1H and 13C NMR spectroscopy data. 17β-HSD of the mycelium constitutively reduced 17-carbonyl group of ADD and DHEA to form the corresponding 17β-alcohols, namely, androsta-1,4-diene-17β-ol-3-one (1-dehydro-TS), and androst-5-ene-3β,17β-diol. Production of the 7α- and 7β-hydroxylated derivatives depended on the induction conditions. The inducer effect relied on the steroid structure and decreased in the order: DHEA > pregnenolone > lithocholic acid. β-Sitosterol did not induce hydroxylase activity in Drechslera sp. CHX fully inhibited the synthesis of 7-hydroxylase in Drechslera mycelium thus providing selective 17-keto reduction. Results contribute to the diversity of steroid modifying enzymes in fungi and can be used at the development of novel biocatalysts for production of valuable steroid 7(α/β)- and 17β-alcohols.
Collapse
|
2
|
Pratush A, Ye X, Yang Q, Kan J, Peng T, Wang H, Huang T, Xiong G, Hu Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl Microbiol Biotechnol 2020; 104:2385-2409. [PMID: 31993703 DOI: 10.1007/s00253-020-10374-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/21/2022]
Abstract
The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone (T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts on vertebrates. Excessive exposure to steroid estrogens causes endocrine disruption in aquatic vertebrates, which affects the normal sexual life of these animals. Steroid pollutants also cause several health problems in humans and other animals. Microbial degradation is an efficient method for removing hormone pollutants from the environment by remediation. Over the last two decades, microbial metabolism of steroids has gained considerable attention due to its higher efficiency to reduce pollutants from the environment. The present review is focused on the major causes of steroid pollution, concentrations of these pollutants in surface water, groundwater, drinking water, and wastewater, their effect on humans and aquatic animals, as well as recent efforts by various research groups that seek better ways to degrade steroids by aerobic and anaerobic microbial systems. Detailed overview of aerobic and anaerobic microbial biotransformation of steroid estrogens and testosterone present in the environment along with the active enzyme systems involved in these biotransformation reactions is described in the review article, which helps readers to understand the biotransformation mechanism of steroids in depth. Other measures such as co-metabolic degradation, consortia degradation, algal, and fungal steroid biotransformation are also discussed in detail.
Collapse
Affiliation(s)
- Amit Pratush
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Xueying Ye
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Jie Kan
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Biology Department, College of Science, Shantou University, Shantou, 515063, China
| | - Guangming Xiong
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Zoghi M, Gandomkar S, Habibi Z. Biotransformation of progesterone and testosterone enanthate by Circinella muscae. Steroids 2019; 151:108446. [PMID: 31302114 DOI: 10.1016/j.steroids.2019.108446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022]
Abstract
In this study, the biotransformation of progesterone (1) and testosterone enanthate (5) using the whole cells of Circinella muscae was investigated for the first time. Microbial transformation of 1 with C. muscae afforded three known metabolites including 9α-hydroxyprogesterone (2), 14α-hydroxyprogesterone (3) and 6β,14α dihydroxyprogesterone (4) after 6 days of incubation at 26 °C. The biotransformation of 5 with C. muscae yielded a new metabolite; 8β,14α-dihydroxytestosterone (8), in addition to two known metabolites; 6β-hydroxytestosterone (6), and 9α-hydroxytestosterone (7). The structure of the metabolites were established on the basis of spectroscopic data.
Collapse
Affiliation(s)
- Mahsa Zoghi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran
| | - Somayyeh Gandomkar
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| |
Collapse
|
4
|
Kozłowska E, Urbaniak M, Hoc N, Grzeszczuk J, Dymarska M, Stępień Ł, Pląskowska E, Kostrzewa-Susłow E, Janeczko T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci Rep 2018; 8:13449. [PMID: 30194436 PMCID: PMC6128828 DOI: 10.1038/s41598-018-31665-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Natalia Hoc
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
5
|
Yildirim K, Kuru A. Microbial hydroxylation of epiandrosterone by Aspergillus candidus. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1289184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kudret Yildirim
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Ali Kuru
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| |
Collapse
|
6
|
Kozłowska E, Urbaniak M, Kancelista A, Dymarska M, Kostrzewa-Susłow E, Stępień Ł, Janeczko T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Adv 2017. [DOI: 10.1039/c7ra04608a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Study on the ability of selected filamentous fungus species to transform dehydroepiandrosterone was performed (DHEA) and interesting DHEA derivatives were obtained with high yield.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology
- Wrocław University of Environmental and Life Sciences
- 51-630 Wrocław
- Poland
| | - Monika Dymarska
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance
- Institute of Plant Genetics
- Polish Academy of Sciences
- 60-479 Poznań
- Poland
| | - Tomasz Janeczko
- Department of Chemistry
- Wrocław University of Environmental and Life Sciences
- 50-375 Wrocław
- Poland
| |
Collapse
|
7
|
Nassiri-Koopaei N, Faramarzi MA. Recent developments in the fungal transformation of steroids. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1022533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Wu Y, Li H, Lu ZM, Li H, Rao ZM, Geng Y, Shi JS, Xu ZH. Enhancement of steroid hydroxylation yield from dehydroepiandrosterone by cyclodextrin complexation technique. Steroids 2014; 84:70-7. [PMID: 24667208 DOI: 10.1016/j.steroids.2014.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022]
Abstract
The cyclodextrins (CDs) complexation technique was performed for the enhancement of hydroxylation yield from dehydroepiandrosterone (DHEA) by Colletotrichum lini ST-1. Using DHEA/methyl-β-cyclodextrin (M-β-CD) or DHEA/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes as substrate (10g/L), the hydroxylation yields were increased by 14.98% and 20.54% respectively, and the biotransformation course was shortened by 12h. X-ray diffractometry, differential scanning calorimetry, and phase solubility analyses showed an inclusion complex was formed between CDs and DHEA at a molar ratio of 1:1, which remarkably increased the solubility of DHEA, and then improved substrate biotransformation efficiency and hydroxylation yield. Meanwhile, results of thermodynamic parameters (ΔG, ΔH, ΔS and Ks) analysis revealed the complexation process was spontaneous and DHEA/CDs inclusion complex was stable. Scanning electron microscopy and transmission electron microscopy showed that the enhancement of DHEA hydroxylation yield also depended on the improvement of cell permeability through interaction between cytomembrane and CDs. These results suggested that the CDs complexation technique was a promising method to enhance steroids hydroxylation yield by increasing steroids solubility and decreasing membrane resistance of substrate and product during biotransformation process.
Collapse
Affiliation(s)
- Yan Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China; School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hui Li
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Heng Li
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhi-Ming Rao
- School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
9
|
Hydroxylation of DHEA and its analogues by Absidia coerulea AM93. Can an inducible microbial hydroxylase catalyze 7α- and 7β-hydroxylation of 5-ene and 5α-dihydro C19-steroids? Bioorg Med Chem 2014; 22:883-91. [DOI: 10.1016/j.bmc.2013.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/03/2013] [Accepted: 11/28/2013] [Indexed: 01/16/2023]
|
10
|
Kristan K, Rižner TL. Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 2012; 129:79-91. [PMID: 21946531 DOI: 10.1016/j.jsbmb.2011.08.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/27/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022]
Abstract
Fungal species are a very important source of many different enzymes, and the ability of fungi to transform steroids has been used for several decades in the production of compounds with a sterane skeleton. Here, we review the characterised and/or purified enzymes for steroid transformations, dividing them into two groups: (i) enzymes of the ergosterol biosynthetic pathway, including data for, e.g. ERG11 (14α-demethylase), ERG6 (C-24 methyltransferase), ERG5 (C-22 desaturase) and ERG4 (C-24 reductase); and (ii) the other steroid-transforming enzymes, including different hydroxylases (7α-, 11α-, 11β-, 14α-hydroxylase), oxidoreductases (5α-reductase, 3β-hydroxysteroid dehydrogenase/isomerase, 17β-hydroxysteroid dehydrogenase, C-1/C-2 dehydrogenase) and C-17-C-20 lyase. The substrate specificities of these enzymes, their cellular localisation, their association with protein super-families, and their potential applications are discussed. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia.
| | | |
Collapse
|
11
|
Huang LH, Li J, Xu G, Zhang XH, Wang YG, Yin YL, Liu HM. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids 2010; 75:1039-46. [PMID: 20600202 DOI: 10.1016/j.steroids.2010.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/13/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Microbial transformation of dehydroepiandrosterone (DHEA, 1) using Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling has been investigated. Neither fungi had been examined previously for steroid biotransformation. One novel metabolic product of DHEA (1) transformed with P. griseopurpureum Smith, 15α-hydroxy-17a-oxa-d-homo-androst-4-ene-3,17-dione (5), was reported for the first time. The steroid products were assigned by interpretation of their spectral data such as (1)H NMR, (13)C NMR, IR, and HR-MS spectroscopy. P. griseopurpureum Smith was proven to be remarkably efficient in oxidation of the DHEA (1) into androst-4-en-3,17-dione (2). The strain was also observed to yield different monooxygenases to introduce hydroxyl groups at C-7α, -14α, and -15α positions of steroids. Preference for Baeyer-Villiger oxidation to lactonize D ring and oxidation of the 3β-alcohol to the 3-ketone were observed in both incubations. The strain of P. glabrum (Wehmer) Westling catalyzed the steroid 1 to generate both testololactone 3, and d-lactone product with 3β-hydroxy-5-en moiety 8. In addition, the strain promoted hydrogenation of the C-5 and C-6 positions, leading to the formation of 3β-hydroxy-17a-oxa-d-homo-5α-androstan-3,17-dione (9). The biotransformation pathways of DHEA (1) with P. glabrum (Wehmer) Westling and P. griseopurpureum Smith have been investigated, respectively. Possible metabolic pathways of DHEA (1) were proposed.
Collapse
Affiliation(s)
- Li-Hua Huang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Shan LH, Liu HM, Huang KX, Dai GF, Cao C, Dong RJ. Synthesis of 3beta, 7alpha, 11alpha-trihydroxy-pregn-21-benzylidene-5-en-20-one derivatives and their cytotoxic activities. Bioorg Med Chem Lett 2009; 19:6637-9. [PMID: 19864129 DOI: 10.1016/j.bmcl.2009.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 09/18/2009] [Accepted: 10/05/2009] [Indexed: 11/26/2022]
Abstract
A series of novel 3beta, 7alpha, 11alpha-trihydroxy-pregn-21-benzylidene-5-en-20-one derivatives were synthesized and characterized by NMR, HRMS. The pregnenolone (1) was first biotransformed by Mucor circinelloides var lusitanicus to 3beta, 7alpha, 11alpha-trihydroxy-pregn-5-en-20-one (3), then 3 was treated with various benzaldehydes to produce 3beta, 7alpha, 11alpha-trihydroxy-pregn-21-benzylidene-5-en-20-one derivatives. These derivatives showed remarkable activity against EC109 cells. The absolute configuration of 3 was also confirmed by signal-crystal X-ray analysis.
Collapse
Affiliation(s)
- Li-Hong Shan
- New Drug Research and Development Center of Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | | | |
Collapse
|
13
|
Kołek T, Szpineter A, Swizdor A. Baeyer-Villiger oxidation of DHEA, pregnenolone, and androstenedione by Penicillium lilacinum AM111. Steroids 2008; 73:1441-5. [PMID: 18755205 DOI: 10.1016/j.steroids.2008.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/23/2022]
Abstract
The Baeyer-Villiger monooxygenase (BVMO) produced by Penicillium lilacinum AM111, in contrast to other enzymes of this group known in the literature, is able to process 3beta-hydroxy-5-ene steroid substrates. Transformation of DHEA and pregnenolone yielded, as a sole or main product, 3beta-hydroxy-17a-oxa-d-homo-androst-5-en-17-one, a new metabolite of these substrates; pregnenolone was transformed also to testololactone. Testololactone was the only product of oxidation of androstenedione by P. lilacinum AM111. Investigations of the time evolution of reaction progress have indicated that the substrates stimulate activity of BVMO(s) of P. lilacinum AM111.
Collapse
Affiliation(s)
- Teresa Kołek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | | | | |
Collapse
|
14
|
Fernandes P, Cruz A, Angelova B, Pinheiro H, Cabral J. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00029-2] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Brasch J, Flader S, Roggentin P, Wudy S, Homoki J, Shackleton CHL, Sipell W. [Dehydroepiandrosterone metabolism by Epidermophyton floccosum]. Mycoses 2002; 45 Suppl 1:37-40. [PMID: 12073561 DOI: 10.1111/j.1439-0507.2002.tb04544.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Steroid hormones may be relevant for the fungus-host relation in dermatophytoses. In contrast to most other hosts of dermatophytes, humans are characterized by a high cutaneous concentration of the adrenal androgen dehydroepiandrosterone (DHEA) and its sulphate (DHEAS). To investigate whether the strictly anthropophilic dermatophyte Epidermophyton floccosum can metabolize this steroid hormone, cultures of E. floccosum were supplemented with DHEA. After 5 days of incubation the steroids in the culture supernatants were extracted and differentiated by gaschromatography and massspectrometry (GC-MS). The results show that a nearly complete metabolization of DHEA by E. floccosum leads to the formation of multiple new steroids/metabolites some of which have not been reported before. Therefore, this fungus could possibly mediate the hormone regulated cutaneous defense mechanisms of the host by an intraepidermal metabolization of DHEA.
Collapse
Affiliation(s)
- J Brasch
- Universitäts-Hautklinik, Schittenhelmstr. 7, D-24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Vico P, Cauet G, Rose K, Lathe R, Degryse E. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17beta-hydroxysteroid dehydrogenase activity. Yeast 2002; 19:873-86. [PMID: 12112241 DOI: 10.1002/yea.882] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility.
Collapse
Affiliation(s)
- Pedro Vico
- Transgene SA, 11 Rue de Molsheim, 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|