1
|
Phanstiel O. An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. Int J Cancer 2017; 142:1968-1976. [PMID: 29134652 DOI: 10.1002/ijc.31155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest major cancers, with a five year survival rate of less than 8%. With current therapies only giving rise to modest life extension, new approaches are desperately needed. Even though targeting polyamine metabolism is a proven anticancer strategy, there are no reports, which thoroughly survey the literature describing the role of polyamine biosynthesis and transport in PDAC. This review seeks to fill this void by describing what is currently known about polyamine metabolism in PDAC and identifies new targets and opportunities to treat this disease. Due to the pleiotropic effects that polyamines play in cells, this review covers diverse areas ranging from polyamine metabolism (biosynthesis, catabolism and transport), as well as the potential role of polyamines in desmoplasia, autophagy and immune privilege. Understanding these diverse roles provides the opportunity to design new therapies to treat this deadly cancer via polyamine depletion.
Collapse
Affiliation(s)
- Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL
| |
Collapse
|
2
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
3
|
Poulin R, Casero RA, Soulet D. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 2011; 42:711-23. [PMID: 21814785 DOI: 10.1007/s00726-011-0987-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/02/2011] [Indexed: 01/11/2023]
Abstract
Very limited molecular knowledge exists about the identity and protein components of the ubiquitous polyamine transporters found in animal cells. However, a number of reports have been published over the last 5 years on potential candidates for metazoan polyamine permeases. We review the available evidence on these putative polyamine permeases, as well as establish a useful "identikit picture" of the general polyamine transport system, based on its properties as found in a wide spectrum of mammalian cells. Any molecular candidate encoding a putative "general" polyamine permease should fit that provided portrait. The current models proposed for the mechanism of polyamine internalization in mammalian cells are also briefly reviewed.
Collapse
Affiliation(s)
- R Poulin
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, Canada.
| | | | | |
Collapse
|
4
|
Tomasi S, Renault J, Martin B, Duhieu S, Cerec V, Le Roch M, Uriac P, Delcros JG. Targeting the Polyamine Transport System with Benzazepine- and Azepine-Polyamine Conjugates. J Med Chem 2010; 53:7647-63. [DOI: 10.1021/jm1007648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophie Tomasi
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Jacques Renault
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Bénédicte Martin
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Stephane Duhieu
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Virginie Cerec
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Myriam Le Roch
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Philippe Uriac
- Produits Naturels−Synthèses−Chimie Médicinale, Sciences Chimiques de Rennes, CNRS UMR 6226, Faculté de Pharmacie, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| | - Jean-Guy Delcros
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, Université Européenne de Bretagne, Rennes Cedex, France
| |
Collapse
|
5
|
Polyamine transport as a target for treatment of Pneumocystis pneumonia. Antimicrob Agents Chemother 2009; 53:5259-64. [PMID: 19805570 DOI: 10.1128/aac.00662-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polyamine levels are greatly increased in alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP), leading to increased production of H(2)O(2), which causes AMs to undergo apoptosis. One of the mechanisms by which polyamine levels in AMs are elevated is enhanced uptake of exogenous polyamines. In this study, the possibility of targeting polyamine uptake as a treatment for PCP was examined. Four anthracene- and one benzene-polyamine conjugates that are potential polyamine transport inhibitors, including N1-anthracen-9-ylmethyl-butane-1,4-diamine; N-(4-aminobutyl)-N-anthracen-9-ylmethylbutane-1,4-diamine; N-[4-(4-aminobutylamino)butyl]-N-anthracen-9-ylmethylbutane-1,4-diamine; N-(4-amino-butyl)-N'-(10-[[4-(4-amino-butylamino)butylamino]-methyl]anthracen-9-ylmethyl)butane-1,4-diamine (44-Ant-44); and benzene-polyamine conjugate N-(4-amino-butyl)-N'-(4-[[4-(4-amino-butylamino)butylamino]-methyl]benzyl)butane-1,4-diamine (44-Bn-44), were tested. Compounds 44-Ant-44 and 44-Bn-44 were found to have a very low toxicity to AMs in vitro and were evaluated for their therapeutic effect on PCP in vivo. Sprague-Dawley rats infected with P. carinii for 28 days were intranasally instilled with 50 microl of a 1 mM solution of 44-Bn-44 or 44-Ant-44 every 2 days. Twenty-one days after initiation of the treatment, three to five rats from each group were sacrificed and examined for lung pathology, organism burden, and apoptosis of AMs. Both 44-Bn-44 and 44-Ant-44 reduced organism burdens; however, only 44-Ant-44 decreased the severity of the infection with reduced lung inflammation, increased clearance of exudates, increased air space, and decreased apoptosis of AMs. 44-Ant-44 also significantly prolonged the survival of treated animals. These results suggest that polyamine uptake is a potential target for treatment of PCP.
Collapse
|
6
|
Kan PL, Gray AI, Tetley L, Converse CA, Schätzlein AG, Uchegbu IF. Tumour gene expression from C12 spermine amphiphile gene delivery systems. J Drug Target 2008; 13:345-57. [PMID: 16278154 DOI: 10.1080/10611860500333700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gene therapy requires safe and efficient gene delivery systems. Towards this aim both the gene formulation and tumour transfection ability of C12 spermine amphiphiles were tested. Five amphiphiles were synthesised and characterised: 1-[N,N-bis(3-aminopropyl)-1,4-butane diamine] dodecane (12G0--a C12 spermine amphiphile), a poly(ethylene glycol) (PEG, MW = 2 kDa) derivative of 12G0, 1,12-[N,N-bis(3-aminopropyl)-1,4-butane diamine] dodecane (12G1--a C12 spermine bolaamphiphile) and N-methyl quaternary ammonium derivatives of both 12G0 (12QG0) and 12G1 (12QG1). All amphiphiles except 12G0, which precipitates, yield nanoparticles in aqueous media with and without DNA. Thus when 12G0 is substituted with either quaternary ammonium or PEG groups it forms nanoparticles both with and without DNA. The minimum nitrogen, phosphate ratio required to completely condense DNA (NP) was inversely proportional to the particles' zeta potential (zeta), NP = 1626/zeta(0.98). Biological testing showed that both PEG and quaternary ammonium groups diminished the membrane lytic ability of these C12 amphiphiles. On intratumoural injection, while PEG groups hamper gene transfer, the quaternary ammonium amphiphile (12QG0) produces tumour confined gene expression that is 80% of that produced by linear poly(ethylenimine) (LPEI, MW = 22 kDa); while the intratumoural injection of LPEI produced significant gene expression in the liver and lung, making 12QG0 suitable for the administration of cytotoxic tumouricidal genes.
Collapse
Affiliation(s)
- Pei Lee Kan
- University of Strathclyde, Department of Pharmaceutical Sciences, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
7
|
Yu H, Chokhawala HA, Varki A, Chen X. Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. Org Biomol Chem 2007; 5:2458-63. [PMID: 17637967 PMCID: PMC2769491 DOI: 10.1039/b706507h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialyl Tn (STn) and sialyl lactoside derivatives containing O-acetylated sialic acid residues have been chemoenzymatically synthesized using a one-pot three-enzyme system and conjugated to biotinylated human serum albumin (HSA) using an adipic acid para-nitrophenyl ester coupling reagent. This approach provides an efficient and general protocol for preparing carbohydrate-protein conjugates containing base-sensitive groups.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| | - Harshal A. Chokhawala
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA. Fax: 01 530 752 8995; Tel: 01 530 754 6037; E-mail:
| |
Collapse
|
8
|
Sol V, Lamarche F, Enache M, Garcia G, Granet R, Guilloton M, Blais JC, Krausz P. Polyamine conjugates of meso-tritolylporphyrin and protoporphyrin IX: Potential agents for photodynamic therapy of cancers. Bioorg Med Chem 2006; 14:1364-77. [PMID: 16263292 DOI: 10.1016/j.bmc.2005.09.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
An efficient five-step synthesis method was developed to obtain tritolylporphyrin and protoporphyrin IX polyamine conjugates. These compounds were composed of either one polyamine unit (spermidine or spermine) covalently tethered to monocarboxyphenyl tritolylporphyrin or two molecules of polyamines borne by protoporphyrin IX. In each compound, an aliphatic spacer arm is linked to the N(4) polyamine position. Photocytotoxicity of these new compounds was evaluated against K562 human chronic myelogenous leukemia cells and compared to Photofrin II; protoporphyrin IX polyamine conjugates exhibited much stronger photocytocicity than Photofrin II and were shown to readily induce necrosis in treated cells.
Collapse
Affiliation(s)
- Vincent Sol
- Université de Limoges, Faculté des Sciences et Techniques, Laboratoire de Chimie des Substances Naturelles (LCSN), France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu X, Ling CC, Bundle DR. A new homobifunctional p-nitro phenyl ester coupling reagent for the preparation of neoglycoproteins. Org Lett 2006; 6:4407-10. [PMID: 15548037 DOI: 10.1021/ol048614m] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new linker system has been designed and applied to neoglycoprotein synthesis. Reaction of oligosaccharide omega-aminoalkyl glycosides with homobifunctional adipic acid p-nitrophenyl diesters in dry DMF gave the corresponding amide half ester in good yields and of sufficient stability to permit chromatographic purification. Subsequent conjugation with bovine serum albumin under very mild conditions afforded the corresponding neoglycoproteins with good efficiency. The method is well suited for the coupling of very small amounts (mg) of oligosaccharide and protein. [structure: see text]
Collapse
Affiliation(s)
- Xiangyang Wu
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
10
|
Delcros JG, Tomasi S, Duhieu S, Foucault M, Martin B, Le Roch M, Eifler-Lima V, Renault J, Uriac P. Effect of Polyamine Homologation on the Transport and Biological Properties of Heterocyclic Amidines. J Med Chem 2005; 49:232-45. [PMID: 16392808 DOI: 10.1021/jm050018q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Five sets of heterocyclic derivatives of various sizes and complexities coupled by an amidine function to putrescine, spermidine, or spermine were prepared. They were essentially tested to determine the influence of the polyamine chain on their cellular transport. To comment on affinity and on selective transport via the polyamine transport system (PTS), K(i) values for polyamine uptake were determined in L1210 cells, and the cytotoxicity and accumulation of the conjugates were determined in CHO and polyamine transport-deficient mutant CHO-MG cells, as well as in L1210 and alpha-difluoromethylornithine- (DFMO-) treated L1210 cells. Unlike spermine, putrescine and spermidine were clearly identified as selective motifs that enable cellular entry via the PTS. However, this property was clearly limited by the size of substituents: these polyamines were able to ferry a dihydroquinoline system via the PTS but did not impart any selectivity to bulkier substituents.
Collapse
Affiliation(s)
- Jean-Guy Delcros
- Groupe de Recherche en Thérapeutique Anticancéreuse, Faculté de Médecine, Université Rennes 1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Covassin L, Desjardins M, Soulet D, Charest-Gaudreault R, Audette M, Poulin R. Xylylated dimers of putrescine and polyamines: influence of the polyamine backbone on spermidine transport inhibition. Bioorg Med Chem Lett 2003; 13:3267-71. [PMID: 12951106 DOI: 10.1016/s0960-894x(03)00668-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimeric norspermidine and spermidine derivatives are strong competitive inhibitors of polyamine transport. A xylyl tether was used for the dimerization of various triamines and spermine via a secondary amino group, and of putrescine via an ether or an amino group. Dimerization of putrescine moieties potentiates their ability to compete against spermidine transport to a much greater extent than for triamine dimers.
Collapse
Affiliation(s)
- Laurence Covassin
- Faculty of Pharmacy, Faculty of Medicine, Laval University, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
12
|
Manku S, Wang F, Hall DG. Synthesis and high performance liquid chromatography/electrospray mass spectrometry single-bead decoding of split-pool structural libraries of polyamines supported on polystyrene and polystyrene/ethylene glycol resins. JOURNAL OF COMBINATORIAL CHEMISTRY 2003; 5:379-91. [PMID: 12857106 DOI: 10.1021/cc0201142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines are ubiquitous biomolecules present in all living cells. These cationic compounds play essential roles in both cell growth and differentiation and are known to interact in complex ways with polyanionic biomolecules. Consequently, there is significant interest in expanding nature's polyamine diversity using combinatorial synthesis and screening strategies. This article describes an efficient split-pool solid-phase synthetic strategy toward the generation of encoded libraries of polyamines via the exhaustive borane-promoted reduction of trityl-linked, resin-bound polyamides. Model structural libraries of tetra- and pentaamines were designed from a set of geometrically diverse amino acid building blocks. To encode the libraries, a partial termination synthesis approach was employed at the polyamide stage, allowing each library to be analyzed from single beads by HPLC/ESMS under two sets of conditions featuring both pH extremes. Determination of the sequence of polyamine residues was simply achieved by the mass differences observed between the full oligomers and the terminated ones. Both polystyrene- and TentaGel-supported libraries, including a library of 4913 pentaamines, were prepared and successfully decoded. For the TentaGel-supported libraries, suitable for on-bead aqueous screening of biomolecules, a novel trityl-derivatized resin was prepared in which the trityl group is anchored to the poly(ethylene glycol) chains via a methylene group. The resulting resin is much more resistant than other commercially available polystyrene-poly(ethylene glycol) trityl resins to the harsh borane reduction conditions required. Two workup conditions for the cleavage of the resultant borane-amine adducts were evaluated on the TentaGel bound polyamide 14. Although the two methods showed a comparable efficiency when using the polystyrene support, with 14 it was found that the piperidine-exchange method afforded polyamines of higher purity than the iodine-based oxidative method previously developed in our laboratory.
Collapse
Affiliation(s)
- Sukhdev Manku
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada,T6G 2G2
| | | | | |
Collapse
|