1
|
Wang L, Ling Y, Tian Y, Wang X, Sasaki S, Taniguchi Y. The Development of Non-natural Type Nucleoside to Stabilize Triplex DNA Formation against CG and TA Inversion Site. Curr Med Chem 2024; 31:2663-2686. [PMID: 37183460 DOI: 10.2174/0929867330666230512114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Based on the sequence-specific recognition of target duplex DNA by triplexforming oligonucleotides (TFOs) at the major groove side, the antigene strategy has been exploited as a gene-targeting tool with considerable attention. Triplex DNA is formed via the specific base triplets by the Hoogsteen or reverse Hoogsteen hydrogen bond interaction between TFOs and the homo-purine strand from the target duplex DNA, leading to the established sequence-specificity. However, the presence of inversion sites, which are known as non-natural nucleosides that can form satisfactory interactions with 2'- deoxythymidine (dT) and 2'-deoxycytidine (dC) in TA and CG base pairs in the target homo-purine DNA sequences, drastically restricts the formation of classically stable base triplets and even the triplex DNA. Therefore, the design of non-natural type nucleosides, which can effectively recognize CG or/and TA inversion sites with satisfactory selectivity, should be of great significance to expanding the triplex-forming sequence. Here, this review mainly provides a comprehensive review of the current development of novel nonnatural nucleosides to recognize CG or/and TA inversion sites in triplex DNA formation against double-strand DNA (dsDNA).
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Tian
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiao Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Nagasaki City, Japan
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Sasaki S. Development of Novel Functional Molecules Targeting DNA and RNA. Chem Pharm Bull (Tokyo) 2019; 67:505-518. [PMID: 31155555 DOI: 10.1248/cpb.c19-00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleic acid therapeutics such as antisense and small interfering RNA (siRNA) have attracted increasing attention as innovative medicines that interfere with and/or modify gene expression systems. We have developed new functional oligonucleotides that can target DNA and RNA with high efficiency and selectivity. This review summarizes our achievements, including (1) the formation of non-natural triplex DNA for sequence-specific inhibition of transcription; (2) artificial receptor molecules for 8-oxidized-guanosine nucleosides; and (3) reactive oligonucleotides with a cross-linking agent or a functionality-transfer nucleoside for RNA pinpoint modification.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
3
|
Nishioka T, Oshiro I, Onizuka K, Taniguchi Y, Sasaki S. Efficient Thymidine-Selective DNA Interstrand Photo-activated Crosslinking by the 6-Thioguanine Connected via an Ethylene-Linker to the 2′-Deoxyribose Unit. Chem Pharm Bull (Tokyo) 2016; 64:1315-20. [DOI: 10.1248/cpb.c16-00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Ikuya Oshiro
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
4
|
Nishimoto A, Jitsuzaki D, Onizuka K, Taniguchi Y, Nagatsugi F, Sasaki S. 4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA. Nucleic Acids Res 2013; 41:6774-81. [PMID: 23778430 PMCID: PMC3711451 DOI: 10.1093/nar/gkt197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The formation of interstrand cross-links in nucleic acids can have a strong impact on biological function of nucleic acids; therefore, many cross-linking agents have been developed for biological applications. Despite numerous studies, there remains a need for cross-linking agents that exhibit both efficiency and selectivity. In this study, a 4-vinyl-substituted analog of thymidine (T-vinyl derivative) was designed as a new cross-linking agent, in which the vinyl group is oriented towards the Watson–Crick face to react with the amino group of an adenine base. The interstrand cross-link formed rapidly and selectively with a uridine on the RNA substrate at the site opposite to the T-vinyl derivative. A detailed analysis of cross-link formation while varying the flanking bases of the RNA substrates indicated that interstrand cross-link formation is preferential for the adenine base on the 5′-side of the opposing uridine. In the absence of a 5′-adenine, a uridine at the opposite position underwent cross-linking. The oligodeoxynucleotides probe incorporating the T-vinyl derivative efficiently formed interstrand cross-links in parallel-type triplex DNA with high selectivity for dA in the homopurine strand. The efficiency and selectivity of the T-vinyl derivative illustrate its potential use as a unique tool in biological and materials research.
Collapse
Affiliation(s)
- Atsushi Nishimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Wu W, Xu H, Shen D, Qiu T, Fan LJ. One-step synthesis of a thienylenepyridazinylenethienylene-based coil-rod-coil copolymer with enhanced emission and improved fluorescence stability. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Nagatsugi F, Imoto S. Induced cross-linking reactions to target genes using modified oligonucleotides. Org Biomol Chem 2011; 9:2579-85. [PMID: 21373696 DOI: 10.1039/c0ob00819b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthetic oligonucleotides (ONs) are valuable tools that interfere with gene expression by specifically binding to target genes in a sequence-specific manner. Reactive ONs containing cross-linking agents are expected to induce efficient inhibition because they bind covalently to target genes. In recent years, researchers have reported several cross-linking reactions that target DNA induced by external stimuli. This short review highlights recently developed novel cross-linking reactions, focusing particularly on nucleoside derivatives developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan.
| | | |
Collapse
|
7
|
Malnuit V, Duca M, Benhida R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 2010; 9:326-36. [PMID: 21046036 DOI: 10.1039/c0ob00418a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, divided into three sections, describes the contribution of the chemists' community to the development and application of triple helix strategy by using artificial nucleic acids, particularly for the recognition of DNA sequences incorporating base pair inversions. Firstly, the development of nucleobases that recognise CG inversion is surveyed followed secondly by specific recognition of TA inverted base pair. Finally, we point out in the last section recent perspectives and applications, driven from knowledge in nucleic acids interactions, in the growing field of nanotechnology and supramolecular chemistry at the border area of physics, chemistry and molecular biology.
Collapse
Affiliation(s)
- Vincent Malnuit
- Laboratoire de Chimie des Molécules Bioactives et des Arômes, LCMBA, UMR 6001, Institut de Chimie de Nice, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
8
|
Nagatsugi F, Sasaki S. Synthesis of Reactive Oligonucleotides for Gene Targeting and Their Application to Gene Expression Regulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Taniguchi Y, Kurose Y, Nishioka T, Nagatsugi F, Sasaki S. The alkyl-connected 2-amino-6-vinylpurine (AVP) crosslinking agent for improved selectivity to the cytosine base in RNA. Bioorg Med Chem 2010; 18:2894-901. [PMID: 20346683 DOI: 10.1016/j.bmc.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/25/2022]
Abstract
We have previously reported that the 2-amino-6-vinylpurine (AVP) nucleoside exhibits a highly efficient and selective crosslinking reaction toward cytosine and displayed an improved antisense inhibition in cultured cells. In this study, we further investigated the alkyl-connected AVP nucleoside analogs for more efficient crosslinking to the cytosine base (rC) of the target RNA. We synthesized three AVP analogs which connect the 2-amino-6-vinylpurine unit to the 2'-deoxyribose through a methylene, an ethylene, or a butylene linker. The ODN incorporating the AVP analog with the methylene or the butylene linker showed a slightly higher crosslinking to the target rC of RNA than the original AVP with no linker. In contrast, the AVP with the ethylene linker formed a selective and efficient crosslink to the rC of the target RNA.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
10
|
Hattori K, Hirohama T, Imoto S, Kusano S, Nagatsugi F. Formation of highly selective and efficient interstrand cross-linking to thymine without photo-irradiation. Chem Commun (Camb) 2009:6463-5. [DOI: 10.1039/b915381k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ali MM, Nagatsugi F, Sasaki S, Nakahara R, Maeda M. Application of 2-amino-6-vinylpurine as an efficient agent for conjugation of oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:159-69. [PMID: 16541959 DOI: 10.1080/15257770500446873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Attempts have been made to conjugate a variety of molecules with oligonucleotides to achieve useful functions. In this study, we have established a new efficient method for post-synthetic conjugation of oligonucleotides with the use of the 2-amino-6-vinylpurine nucleoside. Amino nucleophiles form the corresponding conjugates under acidic conditions, whereas thiol nucleophiles reacted efficiently under alkaline conditions. Thus, glutathione and HS-Cys-(Arg)8 without protecting groups were efficiently conjugated to the 2-amino-6-vinylpurine-bearing ODN under alkaline conditions. The use of 2-amino-6-vinylpurine as an agent for conjugation is advantageous in that it is stable during the reaction and may be applied to conjugation of ODNs with multiple functional molecules.
Collapse
Affiliation(s)
- Md Monsur Ali
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
12
|
Koizumi M, Morita K, Daigo M, Tsutsumi S, Abe K, Obika S, Imanishi T. Triplex formation with 2'-O,4'-C-ethylene-bridged nucleic acids (ENA) having C3'-endo conformation at physiological pH. Nucleic Acids Res 2003; 31:3267-73. [PMID: 12799454 PMCID: PMC162250 DOI: 10.1093/nar/gkg416] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2002] [Revised: 01/28/2003] [Accepted: 03/31/2003] [Indexed: 01/28/2023] Open
Abstract
Antigenes, which are substances that inhibit gene expression by binding to double-stranded DNA (dsDNA) in a sequence-specific manner, are currently sought for the treatment of various gene-related diseases. As such antigenes, we developed new nuclease-resistant oligopyrimidine nucleotides that are partially modified with 2'-O,4'-C-ethylene nucleic acids (ENA), which are constrained in the C3'-endo conformation and can form a triplex with dsDNA at physiological pH. It was found that these oligonucleotides formed triplexes similarly to those partially modified with 2'-O,4'-C-methylene nucleic acids (2',4'-BNA or LNA), as determined by UV melting analyses, electromobility shift assays, CD spectral analyses and restriction enzyme inhibition assays. In our studies, oligonucleotides fully modified with ENA have delta torsion angle values that are marginally higher than those of 2',4'-BNA/LNA. ENA oligonucleotides present in 10-fold the amount of dsDNA were found to be favorable in forming triplexes. These results provide useful information for the future design of triplex-forming oligonucleotides fully modified with such nucleic acids constrained in the C3'-endo conformation considering that oligonucleotides fully modified with 2',4'-BNA/LNA do not form triplexes.
Collapse
Affiliation(s)
- Makoto Koizumi
- Exploratory Chemistry Research Laboratories, Sankyo Co. Ltd, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nagatsugi F, Sasaki S, Miller PS, Seidman MM. Site-specific mutagenesis by triple helix-forming oligonucleotides containing a reactive nucleoside analog. Nucleic Acids Res 2003; 31:e31. [PMID: 12626730 PMCID: PMC152885 DOI: 10.1093/nar/gng031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of homopurine-homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, CREST (JST), Japan
| | | | | | | |
Collapse
|
14
|
Sasaki S. [Creation of functional recognition molecules for chemical modification of gene expression]. YAKUGAKU ZASSHI 2002; 122:1081-93. [PMID: 12510386 DOI: 10.1248/yakushi.122.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial molecules that exhibit specific recognition of duplex DNA have attracted great interest because of their potential application in the manipulation of gene expression. Specific chemical reactions to the target base within the predetermined site would secure selective inhibition at either translation or transcription reactions. A more interesting application would be to alter the reacted base structure to induce a point mutation. In our study, we have focused our efforts on: 1) development of new cross-linking molecules with high efficiency as well as high selectivity; 2) establishment of a new molecular basis for the formation of nonnatural triplexes; and 3) synthetic approaches to the new minor groove binders. This paper summarizes our recent results using two new functional molecules: 2-amino-6-vinylpurine derivatives as new cross-linking agents; and W-shaped nucleic acid analogues as new recognition molecules for the formation of nonnatural-type triplexes.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|