1
|
Abuelizz HA, Marzouk M, Bakheit AH, Al-Salahi R. Investigation of some benzoquinazoline and quinazoline derivatives as novel inhibitors of HCV-NS3/4A protease: biological, molecular docking and QSAR studies. RSC Adv 2020; 10:35820-35830. [PMID: 35517076 PMCID: PMC9056986 DOI: 10.1039/d0ra05604a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Morbidity and mortality due to hepatitis C virus (HCV) is a globe health concern. Hence, there is a persistent demand to design and optimize current HCV therapy and develop novel agents. HCV NS3/A4 protease plays an essential role in HCV life cycle and replication. Thus, HCV NS3/A4 protease inhibitors are one of the best therapeutic targets for the identification of novel candidate drugs. Recent studies have shown some benzoquinazolines as potent antiviral agents and promising HAV-3C protease inhibitors. In the present study, a series of benzo[g]quinazolines (1–13) and their quinazoline analogues (14–17) were evaluated for their HCV-NS3/4A inhibitory activities using in vitro assay. Our results revealed that the target compounds inhibited the activity of the NS3/4A enzyme, (IC50 = 6.41 ± 0.12 to 78.80 ± 1.70 μM) in comparison to telaprevir (IC50 = 1.72 ± 0.03 μM) as a reference drug. Compounds 1, 2, 3, 9, 10 and 13 showed the highest activity (IC50 = 11.02 ± 0.25, 6.41 ± 0.12, 9.35 ± 0.19, 9.08 ± 0.20, 16.03 ± 0.34 and 7.21 ± 0.15 μM, respectively). Molecular docking was performed to study the binding modes of the docked-chosen benzo[g]quinazolines, hydrogen bonding, and amino acid residues at the catalytic triad of the NS3/4A enzyme of HCV. The QSAR was determined to explore the relationships between the molecular structures of the targets and their biological activities by developing prediction models among the known HCV NS3/A4 inhibitors and then to predict the inhibitory activity of the target molecules synthesized. HCV NS3/A4 protease inhibitors are one of the best therapeutic targets for the identification of novel candidate drugs. A series of benzo[g]quinazolines and their quinazoline analogues were evaluated for their HCV-NS3/4A inhibitory activities.![]()
Collapse
Affiliation(s)
- Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Natural Products Group, Center of Excellence for Advanced Sciences, National Research Centre 33 El-Bohouth St. (Former El-Tahrir St.), Dokki Cairo 12622 Egypt
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia .,Department of Chemistry, Faculty of Science and Technology, El-Neelain University P.O. Box 12702 Khartoum 11121 Sudan
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
2
|
Harikishore A, Li E, Lee JJ, Cho NJ, Yoon HS. Combination of pharmacophore hypothesis and molecular docking to identify novel inhibitors of HCV NS5B polymerase. Mol Divers 2015; 19:529-39. [PMID: 25862642 DOI: 10.1007/s11030-015-9591-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) infection or HCV-related liver diseases are now shown to cause more than 350,000 deaths every year. Adaptability of HCV genome to vary its composition and the existence of multiple strains makes it more difficult to combat the emergence of drug-resistant HCV infections. Among the HCV polyprotein which has both the structural and non-structural regions, the non-structural protein NS5B RNA-dependent RNA polymerase (RdRP) mainly mediates the catalytic role of RNA replication in conjunction with its viral protein machinery as well as host chaperone proteins. Lack of such RNA-dependent RNA polymerase enzyme in host had made it an attractive and hotly pursued target for drug discovery efforts. Recent drug discovery efforts targeting HCV RdRP have seen success with FDA approval for sofosbuvir as a direct-acting antiviral against HCV infection. However, variations in drug-binding sites induce drug resistance, and therefore targeting allosteric sites could delay the emergence of drug resistance. In this study, we focussed on allosteric thumb site II of the non-structural protein NS5B RNA-dependent RNA polymerase and developed a five-feature pharmacophore hypothesis/model which estimated the experimental activity with a strong correlation of 0.971 & 0.944 for training and test sets, respectively. Further, the Güner-Henry score of 0.6 suggests that the model was able to discern the active and inactive compounds and enrich the true positives during a database search. In this study, database search and molecular docking results supported by experimental HCV viral replication inhibition assays suggested ligands with best fitness to the pharmacophore model dock to the key residues involved in thumbs site II, which inhibited the HCV 1b viral replication in sub-micro-molar range.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore,
| | | | | | | | | |
Collapse
|
3
|
Hepatitis C Virus Polymerase as a Target for Antiviral Drug Intervention: Non-Nucleoside Inhibitors. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Beaulieu PL. Design and Development of NS5B Polymerase Non‐nucleoside Inhibitors for the Treatment of Hepatitis C Virus Infection. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The hepatitis C virus (HCV) infects an estimated 130–170 million people worldwide and is associated with life‐threatening liver diseases. The recent introduction of the first two HCV direct‐acting antivirals (DAAs) as a complement to the interferon/ribavirin standard of care has provided patients with improved outcomes. Still, 25–30% of subjects infected with genotype 1 HCV do not respond adequately to treatment owing to the emergence of resistant virus and many suffer from severe side effects. A paradigm shift towards the development of interferon‐free combinations of DAAs with complementary modes of action is currently taking place. Virally encoded proteins and enzymes have become the target of HCV drug discovery efforts and several promising new agents are currently being evaluated in the clinic for treatment of chronic HCV infection. The NS5B RNA‐dependent RNA polymerase is responsible for replication of viral RNA and plays a pivotal role in the virus life cycle. NS5B is undoubtedly the most druggable HCV target and is susceptible to several classes of allosteric inhibitors that bind to four distinct sites on the enzyme. This chapter describes successful strategies that have led to the discovery of HCV NS5B antivirals. It is divided according to allosteric sites and describes how each of the known families of inhibitors was discovered, characterized and optimized to provide clinical candidates. When available, the strategies adopted by medicinal chemists to optimize initial leads and address challenges and liabilities encountered on the path to candidate selection are described, along with reported clinical outcomes.
Collapse
Affiliation(s)
- Pierre L. Beaulieu
- Boehringer Ingelheim (Canada) Ltd. 2100 Cunard Street, Laval, Québec Canada, H7S 2G5 resgeneral.lav@boehringer‐ingelheim.com
| |
Collapse
|
5
|
Haudecoeur R, Peuchmaur M, Ahmed-Belkacem A, Pawlotsky JM, Boumendjel A. Structure-Activity Relationships in the Development of Allosteric Hepatitis C Virus RNA-Dependent RNA Polymerase Inhibitors: Ten Years of Research. Med Res Rev 2012; 33:934-84. [DOI: 10.1002/med.21271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Romain Haudecoeur
- Département de Pharmacochimie Moléculaire; Université de Grenoble/CNRS; UMR 5063, BP 53; 38041; Grenoble Cedex 9; France
| | - Marine Peuchmaur
- Département de Pharmacochimie Moléculaire; Université de Grenoble/CNRS; UMR 5063, BP 53; 38041; Grenoble Cedex 9; France
| | | | | | - Ahcène Boumendjel
- Département de Pharmacochimie Moléculaire; Université de Grenoble/CNRS; UMR 5063, BP 53; 38041; Grenoble Cedex 9; France
| |
Collapse
|
6
|
Vliegen I, Paeshuyse J, De Burghgraeve T, Lehman LS, Paulson M, Shih IH, Mabery E, Boddeker N, De Clercq E, Reiser H, Oare D, Lee WA, Zhong W, Bondy S, Pürstinger G, Neyts J. Substituted imidazopyridines as potent inhibitors of HCV replication. J Hepatol 2009; 50:999-1009. [PMID: 19303654 PMCID: PMC7114863 DOI: 10.1016/j.jhep.2008.12.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/17/2008] [Accepted: 12/04/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Following lead optimization, a set of substituted imidazopyridines was identified as potent and selective inhibitors of in vitro HCV replication. The particular characteristics of one of the most potent compounds in this series (5-[[3-(4-chlorophenyl)-5-isoxazolyl]methyl]-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine or GS-327073), were studied. METHODS Antiviral activity of GS-327073 was evaluated in HCV subgenomic replicons (genotypes 1b, 1a and 2a), in the JFH1 (genotype 2a) infectious system and against replicons resistant to various selective HCV inhibitors. Combination studies of GS-327073 with other selective HCV inhibitors were performed. RESULTS Fifty percent effective concentrations for inhibition of HCV subgenomic 1b replicon replication ranged between 2 and 50 nM and were 100-fold higher for HCV genotype 2a virus. The 50% cytostatic concentrations were > or = 17 microM, thus resulting in selectivity indices of > or = 340. GS-327073 retained wild-type activity against HCV replicons that were resistant to either HCV protease inhibitors or several polymerase inhibitors. GS-327073, when combined with either interferon alpha, ribavirin, a nucleoside polymerase or a protease inhibitor resulted in overall additive antiviral activity. Combinations containing GS-327073 proved highly effective in clearing hepatoma cells from HCV. CONCLUSIONS GS-327073 is a potent in vitro inhibitor of HCV replication either alone or in combination with other selective HCV inhibitors.
Collapse
Affiliation(s)
- Inge Vliegen
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | - Jan Paeshuyse
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | - Tine De Burghgraeve
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | | - Gerhard Pürstinger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Austria
| | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Minderbroedesstraat 10, 3000 Leuven, Belgium,Corresponding author. Tel.: +32 16 337341; fax: +32 16 337340
| |
Collapse
|
7
|
Li H, Tatlock J, Linton A, Gonzalez J, Borchardt A, Dragovich P, Jewell T, Prins T, Zhou R, Blazel J, Parge H, Love R, Hickey M, Doan C, Shi S, Duggal R, Lewis C, Fuhrman S. Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorg Med Chem Lett 2006; 16:4834-8. [PMID: 16824756 DOI: 10.1016/j.bmcl.2006.06.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/17/2006] [Accepted: 06/19/2006] [Indexed: 01/31/2023]
Abstract
A novel class of non-nucleoside HCV NS5B polymerase inhibitors has been identified from screening. A co-crystal structure revealed an allosteric binding site in the protein that required a unique conformational change to accommodate inhibitor binding. Herein we report the structure-activity relationships (SARs) of this novel class of dihydropyrone-containing compounds that show potent inhibitory activities against the HCV RNA polymerase in biochemical assays.
Collapse
Affiliation(s)
- Hui Li
- Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Dr., San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pfefferkorn JA, Greene ML, Nugent RA, Gross RJ, Mitchell MA, Finzel BC, Harris MS, Wells PA, Shelly JA, Anstadt RA, Kilkuskie RE, Kopta LA, Schwende FJ. Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid. Bioorg Med Chem Lett 2005; 15:2481-6. [PMID: 15863301 DOI: 10.1016/j.bmcl.2005.03.066] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/16/2005] [Accepted: 03/17/2005] [Indexed: 12/09/2022]
Abstract
A novel series of nonnucleoside HCV NS5B polymerase inhibitors were prepared from (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid, a high throughput screening lead. SAR studies combined with structure based drug design focusing on the southern heterobiaryl region of the template led to the synthesis of several potent and orally bioavailable lead compounds. X-ray crystallography studies were also performed to understand the interaction of these inhibitors with HCV NS5B polymerase.
Collapse
Affiliation(s)
- Jeffrey A Pfefferkorn
- Pfizer Global Research and Development, Michigan Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Horscroft N, Lai VCH, Cheney W, Yao N, Wu JZ, Hong Z, Zhong W. Replicon cell culture system as a valuable tool in antiviral drug discovery against hepatitis C virus. Antivir Chem Chemother 2005; 16:1-12. [PMID: 15739617 DOI: 10.1177/095632020501600101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Discovery of potential therapeutics against hepatitis C virus (HCV) infection has been hampered in the past decade by the inability to grow this virus in tissue culture and by the lack of robust small animal models. This situation has been improved by the recent development of a selectable HCV replicon cell culture system. For the first time, drug discovery scientists are able to screen large compound collections using the replicon cell culture system to identify small molecules with the potential to inhibit HCV RNA replication. The replicon system has also been used to elucidate inhibitors' antiviral mechanism of action and to optimize antiviral potency. In this review, we will summarize the recent development of HCV replicon cell culture system and its use in anti-HCV drug discovery. The antiviral activities of promising lead compounds are also reviewed.
Collapse
Affiliation(s)
- Nigel Horscroft
- Drug Discovery, Valeant Pharmaceuticals International, Costa Mesa, CA, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ding Y, Girardet JL, Smith KL, Larson G, Prigaro B, Lai VCH, Zhong W, Wu JZ. Parallel synthesis of pteridine derivatives as potent inhibitors for hepatitis C virus NS5B RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2005; 15:675-8. [PMID: 15664835 DOI: 10.1016/j.bmcl.2004.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 11/08/2004] [Accepted: 11/12/2004] [Indexed: 12/13/2022]
Abstract
From compound library screening using an HCV NS5B RNA-dependent RNA polymerase enzymatic assay, we identified a pteridine hit compound with an IC(50) of 15 microM. Our SAR studies were focused on the different groups at the 6- and 7-positions, substitutions at the 4-position, and replacement of N(1) or N(3) with carbon in the pteridine ring. We found that NH or OH at 4-position is critical for the inhibitory activity. Furthermore, a hydrophobic substituent at the 4-position may help compounds permeate through the cell membrane.
Collapse
Affiliation(s)
- Yili Ding
- Valeant Pharmaceuticals International, 3300 Hyland Avenue Costa Mesa, CA 92626, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yannopoulos CG, Xu P, Ni F, Chan L, Pereira OZ, Reddy TJ, Das SK, Poisson C, Nguyen-Ba N, Turcotte N, Proulx M, Halab L, Wang W, Bédard J, Morin N, Hamel M, Nicolas O, Bilimoria D, L'Heureux L, Bethell R, Dionne G. HCV NS5B polymerase-bound conformation of a soluble sulfonamide inhibitor by 2D transferred NOESY. Bioorg Med Chem Lett 2004; 14:5333-7. [PMID: 15454222 DOI: 10.1016/j.bmcl.2004.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
HCV NS5B RNA-dependent RNA polymerase (NS5B) is essential for viral replication and is therefore considered a target for antiviral drug development. From our ongoing screening effort in the search for new anti-HCV agents, a novel inhibitor 1 with low microM activity against the HCV NS5B polymerase was identified. SAR analysis indicated the optimal substitution pattern required for activity, for example, carboxylic acid group at 2-position of thiophene ring. We describe the steps taken to identify and solve the bioactive conformation of derivative 6 through the use of the transferred NOE method (trNOE).
Collapse
|
12
|
Chan L, Das SK, Reddy TJ, Poisson C, Proulx M, Pereira O, Courchesne M, Roy C, Wang W, Siddiqui A, Yannopoulos CG, Nguyen-Ba N, Labrecque D, Bethell R, Hamel M, Courtemanche-Asselin P, L'Heureux L, David M, Nicolas O, Brunette S, Bilimoria D, Bédard J. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 1: Sulfonamides. Bioorg Med Chem Lett 2004; 14:793-6. [PMID: 14741291 DOI: 10.1016/j.bmcl.2003.10.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of a novel class of HCV NS5B polymerase inhibitors, 3-arylsulfonylamino-5-phenyl-thiophene-2-carboxylic acids is described. SAR studies have yielded several potent inhibitors of HCV polymerase as well as of HCV subgenomic RNA replication in Huh-7 cells.
Collapse
Affiliation(s)
- Laval Chan
- Shire BioChem Inc., 275 Armand-Frappier, Laval, Quebec, Canada H7V 4A7.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|