1
|
Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025:pjab.101.020. [PMID: 40301047 DOI: 10.2183/pjab.101.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS
- Graduate Institute for Advanced Studies, SOKENDAI
| |
Collapse
|
2
|
Stamatov R, Uzunova S, Kicheva Y, Karaboeva M, Blagoev T, Stoynov S. Supra-second tracking and live-cell karyotyping reveal principles of mitotic chromosome dynamics. Nat Cell Biol 2025; 27:654-667. [PMID: 40185948 PMCID: PMC11991918 DOI: 10.1038/s41556-025-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/11/2025] [Indexed: 04/07/2025]
Abstract
Mitotic chromosome dynamics are essential for the three-dimensional organization of the genome during the cell cycle, but the spatiotemporal characteristics of this process remain unclear due to methodological challenges. While Hi-C methods capture interchromosomal contacts, they lack single-cell temporal dynamics, whereas microscopy struggles with bleaching and phototoxicity. Here, to overcome these limitations, we introduce Facilitated Segmentation and Tracking of Chromosomes in Mitosis Pipeline (FAST CHIMP), pairing time-lapse super-resolution microscopy with deep learning. FAST CHIMP tracked all human chromosomes with 8-s resolution from prophase to telophase, identified 15 out of 23 homologue pairs in single cells and compared chromosomal positioning between mother and daughter cells. It revealed a centrosome-motion-dependent flow that governs the mapping between chromosome locations at prophase and their metaphase plate position. In addition, FAST CHIMP measured supra-second dynamics of intra- and interchromosomal contacts. This tool adds a dynamic dimension to the study of chromatin behaviour in live cells, promising advances beyond the scope of existing methods.
Collapse
Affiliation(s)
- Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yoana Kicheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Karaboeva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tavian Blagoev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
3
|
Thirumalai D, Shi G, Shin S, Hyeon C. Organization and Dynamics of Chromosomes. Annu Rev Phys Chem 2025; 76:565-588. [PMID: 39971382 DOI: 10.1146/annurev-physchem-082423-024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How long thread-like eukaryotic chromosomes fit tidily in the small volume of the nucleus without significant entanglement is just beginning to be understood, thanks to major advances in experimental techniques. Several polymer models, which reproduce contact maps that measure the probabilities that two loci are in spatial contact, have predicted the 3D structures of interphase chromosomes. Data-driven approaches, using contact maps as input, predict that mitotic helical chromosomes are characterized by a switch in handedness, referred to as perversion. By using experimentally derived effective interactions between chromatin loci in simulations, structures of conventional and inverted nuclei have been accurately predicted. Polymer theory and simulations show that the dynamics of individual loci in chromatin exhibit subdiffusive behavior but the diffusion exponents are broadly distributed, which accords well with experiments. Although coarse-grained models are successful, many challenging problems remain, which require the creation of new experimental and computational tools to understand genome biology.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
4
|
Zhang L, Hodgins L, Sakib S, Verbeem A, Mahmood A, Perez-Romero C, Marmion RA, Dostatni N, Fradin C. Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters. Biophys J 2025; 124:980-995. [PMID: 39164967 PMCID: PMC11947476 DOI: 10.1016/j.bpj.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales. Despite their opposite effects on gene transcription, we find that Bcd and Cic have very similar nuclear dynamics, characterized by the coexistence of a freely diffusing monomer population with a number of oligomeric clusters, which range from low stoichiometry and high mobility clusters to larger, DNA-bound hubs. Our observations are consistent with the inclusion of both Bcd and Cic into transcriptional hubs or condensates, while putting constraints on the mechanism by which these form. These results fit in with the recent proposal that many transcription factors might share a common search strategy for target gene regulatory regions that makes use of their large unstructured regions, and may eventually help explain how the transcriptional response they elicit can be at the same time so fast and so precise.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Lydia Hodgins
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Shariful Sakib
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Verbeem
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Ahmad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Carmina Perez-Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Robert A Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Sorbonne University, Nuclear Dynamics, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Chen J, Zhang W, Ma Y, Yan X, Wang Y, Ouyang Q, Wu M, Yang G. Temporal and spatial dynamics of DNA double-strand break repair centers. DNA Repair (Amst) 2025; 149:103825. [PMID: 40101632 DOI: 10.1016/j.dnarep.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Over the past two decades, there has been intense debate regarding whether DNA double-strand breaks (DSBs) maintain a relatively stable position or cluster in mammalian cells. The clustering of DSB and its spatiotemporal properties remain unclear. Here, we provided evidence supporting DSB clustering, using laser microirradiation to induce high-precision damage in cells. The probability of 53BP1 foci clustering varies with the distance between them. 53BP1 foci clustering occurs during the early phase of DNA damage response (DDR) and the repair phase, but not during the repair plateau phase. The clustering at different phases has distinct implications for DNA repair. Clustering accelerates the DSB repair process. These results demonstrate that the extent of 53BP1 foci clustering is influenced by both temporal and spatial factors. Such findings could enhance our understanding of the mechanism of DSB clustering and the DDR, ultimately contributing to the development of improved DNA repair therapies for various diseases.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China.
| |
Collapse
|
6
|
Mader A, Rodriguez AI, Yuan T, Surovtsev I, King MC, Mochrie SGJ. Coarse-grained chromatin dynamics by tracking multiple similarly labeled gene loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640402. [PMID: 40060506 PMCID: PMC11888427 DOI: 10.1101/2025.02.27.640402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The "holy grail" of chromatin research would be to follow the chromatin configuration in individual live cells over time. One way to achieve this goal would be to track the positions of multiple loci arranged along the chromatin polymer with fluorescent labels. Use of distinguishable labels would define each locus uniquely in a microscopic image but would restrict the number of loci that could be observed simultaneously, because of experimental limits to the number of distinguishable labels. Use of the same label for all loci circumvents this limitation but requires a (currently lacking) framework for how to establish each observed locus identity, i.e. to which genomic position it corresponds. Here we analyze theoretically, using simulations of Rouse-model polymers, how single-particle-tracking of multiple identically-labeled loci enables determination of loci identity. We show that the probability of correctly assigning observed loci to genomic positions converges exponentially to unity as the number of observed loci configurations increases. The convergence rate depends only weakly on the number of labeled loci, so that even large numbers of loci can be identified with high fidelity by tracking them across about 8 independent chromatin configurations. In the case of two distinct labels that alternate along the chromatin polymer, we find that the probability of the correct assignment converges faster than for same-labeled loci, requiring observation of fewer independent chromatin configurations to establish loci identities. Finally, for a modified Rouse-model polymer, that realizes a population of dynamic loops, we find that the success probability also converges to unity exponentially as the number of observed loci configurations increases, albeit slightly more slowly than for a classical Rouse model polymer. Altogether, these results establish particle tracking of multiple identically- or alternately-labeled loci over time as a feasible way to infer temporal dynamics of the coarse-grained configuration of the chromatin polymer in individual living cells.
Collapse
Affiliation(s)
- Alexander Mader
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Andrew I Rodriguez
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Tianyu Yuan
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06511, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
7
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2025; 85:208-224. [PMID: 39413793 PMCID: PMC11741928 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Valades-Cruz CA, Barth R, Abdellah M, Shaban HA. Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D. Nat Protoc 2025; 20:163-179. [PMID: 39198619 DOI: 10.1038/s41596-024-01038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/22/2024] [Indexed: 09/01/2024]
Abstract
To understand the dynamic nature of the genome, the localization and rearrangement of DNA and DNA-binding proteins must be analyzed across the entire nucleus of single living cells. Recently, we developed a computational light microscopy technique, called high-resolution diffusion (Hi-D) mapping, which can accurately detect, classify and map diffusion dynamics and biophysical parameters such as the diffusion constant, the anomalous exponent, drift velocity and model physical diffusion from the data at a high spatial resolution across the genome in living cells. Hi-D combines dense optical flow to detect and track local chromatin and nuclear protein motion genome-wide and Bayesian inference to characterize this local movement at nanoscale resolution. Here we present the Python implementation of Hi-D, with an option for parallelizing the calculations to run on multicore central processing units (CPUs). The functionality of Hi-D is presented to the users via user-friendly documented Python notebooks. Hi-D reduces the analysis time to less than 1 h using a multicore CPU with a single compute node. We also present different applications of Hi-D for live-imaging of DNA, histone H2B and RNA polymerase II sequences acquired with spinning disk confocal and super-resolution structured illumination microscopy.
Collapse
Affiliation(s)
- Cesar Augusto Valades-Cruz
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Marwan Abdellah
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Haitham A Shaban
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, Egypt.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Precision Oncology Center, Department of Oncology Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Golembeski A, Lequieu J. A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin. J Phys Chem B 2024; 128:10593-10603. [PMID: 39413416 PMCID: PMC11533178 DOI: 10.1021/acs.jpcb.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation. By leveraging a multiscale approach, our molecular model is able to reproduce chromatin's chemical and structural details at the level of a few nanometers, yet remain efficient enough to simulate chromatin phase separation across 100 nm length scales. We first demonstrate that our model can reproduce key experiments of phase separating nucleosomal arrays, and then apply our model to quantify the interactions that drive their formation into chromatin condensates with either liquid- or solid-like material properties. We next use our model to characterize the molecular structure within chromatin condensates and find that this structure is irregularly ordered and is inconsistent with existing 30 nm fiber models. Lastly we examine how post-translational modifications can modulate chromatin phase separation and how the acetylation of chromatin can lead to chromatin decompaction while still preserving phase separation. Taken together, our work provides a molecular view into the structure and dynamics of phase-separated chromatin and provides new insights into how phase separation might manifest in the nucleus of living cells.
Collapse
Affiliation(s)
- Andrew Golembeski
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Lequieu
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
11
|
Chu FY, Clavijo AS, Lee S, Zidovska A. Transcription-dependent mobility of single genes and genome-wide motions in live human cells. Nat Commun 2024; 15:8879. [PMID: 39438437 PMCID: PMC11496510 DOI: 10.1038/s41467-024-51149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2024] [Indexed: 10/25/2024] Open
Abstract
The human genome is highly dynamic across all scales. At the gene level, chromatin is persistently remodeled and rearranged during active processes such as transcription, replication and DNA repair. At the genome level, chromatin moves in micron-scale domains that break up and re-form over seconds, but the origin of these coherent motions is unknown. Here, we investigate the connection between genomic motions and gene-level activity. Simultaneous mapping of single-gene and genome-wide motions shows that the coupling of gene transcriptional activity to flows of the nearby genome is modulated by chromatin compaction. A motion correlation analysis suggests that a single active gene drives larger-scale motions in low-compaction regions, but high-compaction chromatin drives gene motion regardless of its activity state. By revealing unexpected connections among gene activity, spatial heterogeneities of chromatin and its emergent genome-wide motions, these findings uncover aspects of the genome's spatiotemporal organization that directly impact gene regulation and expression.
Collapse
Affiliation(s)
- Fang-Yi Chu
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexis S Clavijo
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Suho Lee
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
12
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
14
|
Chen L, Wu MY, Chen SL, Hu R, Wang Y, Zeng W, Feng S, Ke M, Wang L, Chen S, Gu M. The Guardian of Vision: Intelligent Bacteriophage-Based Eyedrops for Clinical Multidrug-Resistant Ocular Surface Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407268. [PMID: 39091071 DOI: 10.1002/adma.202407268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Clinical multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is the leading cause of refractory bacterial keratitis (BK). However, the reported BK treatment methods lack biosecurity and bioavailability, which usually causes irreversible visual impairment and even blindness. Herein, for BK caused by clinically isolated MDR-PA infection, armed phages are modularized with the type I photosensitizer (PS) ACR-DMT, and an intelligent phage eyedrop is developed for combined phagotherapy and photodynamic therapy (PDT). These eyedrops maximize the advantages of bacteriophages and ACR-DMT, enabling more robust and specific targeting killing of MDR-PA under low oxygen-dependence, penetrating and disrupting biofilms, and efficiently preventing biofilm reformation. Altering the biofilm and immune microenvironments alleviates inflammation noninvasively, promotes corneal healing without scar formation, protects ocular tissues, restores visual function, and prevents long-term discomfort and pain. This strategy exhibits strong scalability, enables at-home treatment of ocular surface infections with great patient compliance and a favorable prognosis, and has significant potential for clinical application.
Collapse
Affiliation(s)
- Luojia Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ming-Yu Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Si-Ling Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Hu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifei Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Weijuan Zeng
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Min Ke
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Shi Chen
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meijia Gu
- Department of Ophthalmology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Li J, Xiong N, West K, Leung M, Ching Y, Huang J, Yuan J, Yu CH, Leung J, Huen M. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation. Nucleic Acids Res 2024; 52:8897-8912. [PMID: 38966995 PMCID: PMC11347173 DOI: 10.1093/nar/gkae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Collapse
Affiliation(s)
- Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Nan Xiong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Manton Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Yick Pang Ching
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Justin Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| |
Collapse
|
16
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
17
|
Pabba MK, Meyer J, Celikay K, Schermelleh L, Rohr K, Cardoso MC. DNA choreography: correlating mobility and organization of DNA across different resolutions from loops to chromosomes. Histochem Cell Biol 2024; 162:109-131. [PMID: 38758428 PMCID: PMC11227476 DOI: 10.1007/s00418-024-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
Collapse
Affiliation(s)
- Maruthi K Pabba
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany.
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
18
|
Presman DM, Benítez B, Lafuente AL, Vázquez Lareu A. Chromatin structure and dynamics: one nucleosome at a time. Histochem Cell Biol 2024; 162:79-90. [PMID: 38607419 DOI: 10.1007/s00418-024-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen's ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.
Collapse
Affiliation(s)
- Diego M Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Belén Benítez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Agustina L Lafuente
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| | - Alejo Vázquez Lareu
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
19
|
Afanasyev AY, Kim Y, Tolokh IS, Sharakhov IV, Onufriev AV. The probability of chromatin to be at the nuclear lamina has no systematic effect on its transcription level in fruit flies. Epigenetics Chromatin 2024; 17:13. [PMID: 38705995 PMCID: PMC11071202 DOI: 10.1186/s13072-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated a negative correlation between gene expression and positioning of genes at the nuclear envelope (NE) lined by nuclear lamina, but the exact relationship remains unclear, especially in light of the highly stochastic, transient nature of the gene association with the NE. RESULTS In this paper, we ask whether there is a causal, systematic, genome-wide relationship between the expression levels of the groups of genes in topologically associating domains (TADs) of Drosophila nuclei and the probabilities of TADs to be found at the NE. To investigate the nature of this possible relationship, we combine a coarse-grained dynamic model of the entire Drosophila nucleus with genome-wide gene expression data; we analyze the TAD averaged transcription levels of genes against the probabilities of individual TADs to be in contact with the NE in the control and lamins-depleted nuclei. Our findings demonstrate that, within the statistical error margin, the stochastic positioning of Drosophila melanogaster TADs at the NE does not, by itself, systematically affect the mean level of gene expression in these TADs, while the expected negative correlation is confirmed. The correlation is weak and disappears completely for TADs not containing lamina-associated domains (LADs) or TADs containing LADs, considered separately. Verifiable hypotheses regarding the underlying mechanism for the presence of the correlation without causality are discussed. These include the possibility that the epigenetic marks and affinity to the NE of a TAD are determined by various non-mutually exclusive mechanisms and remain relatively stable during interphase. CONCLUSIONS At the level of TADs, the probability of chromatin being in contact with the nuclear envelope has no systematic, causal effect on the transcription level in Drosophila. The conclusion is reached by combining model-derived time-evolution of TAD locations within the nucleus with their experimental gene expression levels.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yoonjin Kim
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor S Tolokh
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
20
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensembles identifies determinants of homolog pairing during meiosis. PLoS Comput Biol 2024; 20:e1011416. [PMID: 38739641 PMCID: PMC11115365 DOI: 10.1371/journal.pcbi.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. Chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing in addition to homolog attraction. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Incorporating natural chromosome lengths, the model accurately recapitulates efficiency and kinetics of homolog pairing observed for wild-type and mutant meiosis in budding yeast, and can be adapted to nuclear dimensions and chromosome sets of other organisms.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio, United States of America
| |
Collapse
|
21
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
22
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensemble identifies determinants of homolog pairing during meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.09.552574. [PMID: 38260664 PMCID: PMC10802385 DOI: 10.1101/2023.08.09.552574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements during prophase I appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. In addition to homolog attraction, chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Predictions from the model are readily compared to experimental data from budding yeast, parameters can be adjusted to other cellular systems and predictions from the model can be tested via experimental manipulation of the relevant chromosomal features.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
23
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
24
|
Pabba MK, Ritter C, Chagin VO, Meyer J, Celikay K, Stear JH, Loerke D, Kolobynina K, Prorok P, Schmid AK, Leonhardt H, Rohr K, Cardoso MC. Replisome loading reduces chromatin motion independent of DNA synthesis. eLife 2023; 12:RP87572. [PMID: 37906089 PMCID: PMC10617993 DOI: 10.7554/elife.87572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Chromatin has been shown to undergo diffusional motion, which is affected during gene transcription by RNA polymerase activity. However, the relationship between chromatin mobility and other genomic processes remains unclear. Hence, we set out to label the DNA directly in a sequence unbiased manner and followed labeled chromatin dynamics in interphase human cells expressing GFP-tagged proliferating cell nuclear antigen (PCNA), a cell cycle marker and core component of the DNA replication machinery. We detected decreased chromatin mobility during the S-phase compared to G1 and G2 phases in tumor as well as normal diploid cells using automated particle tracking. To gain insight into the dynamical organization of the genome during DNA replication, we determined labeled chromatin domain sizes and analyzed their motion in replicating cells. By correlating chromatin mobility proximal to the active sites of DNA synthesis, we showed that chromatin motion was locally constrained at the sites of DNA replication. Furthermore, inhibiting DNA synthesis led to increased loading of DNA polymerases. This was accompanied by accumulation of the single-stranded DNA binding protein on the chromatin and activation of DNA helicases further restricting local chromatin motion. We, therefore, propose that it is the loading of replisomes but not their catalytic activity that reduces the dynamics of replicating chromatin segments in the S-phase as well as their accessibility and probability of interactions with other genomic regions.
Collapse
Affiliation(s)
| | - Christian Ritter
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Vadim O Chagin
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
- Institute of Cytology RASSt. PetersburgRussian Federation
| | - Janis Meyer
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Kerem Celikay
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science, University of New South WalesSydneyAustralia
| | - Dinah Loerke
- Department of Physics & Astronomy, University of DenverDenverUnited States
| | - Ksenia Kolobynina
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Paulina Prorok
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| | - Alice Kristin Schmid
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | | | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg UniversityHeidelbergGermany
| | - M Cristina Cardoso
- Department of Biology, Technical University of DarmstadtDarmstadtGermany
| |
Collapse
|
25
|
Abstract
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
- Department of Physics, University of Maryland, College Park, Maryland, USA;
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, USA;
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| |
Collapse
|
26
|
Stanislavsky AA, Weron A. Confined modes of single-particle trajectories induced by stochastic resetting. Phys Rev E 2023; 108:044130. [PMID: 37978668 DOI: 10.1103/physreve.108.044130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Random trajectories of single particles in living cells contain information about the interaction between particles, as well as with the cellular environment. However, precise consideration of the underlying stochastic properties, beyond normal diffusion, remains a challenge as applied to each particle trajectory separately. In this paper, we show how positions of confined particles in living cells can obey not only the Laplace distribution, but the Linnik one. This feature is detected in experimental data for the motion of G proteins and coupled receptors in cells, and its origin is explained in terms of stochastic resetting. This resetting process generates power-law waiting times, giving rise to the Linnik statistics in confined motion, and also includes exponentially distributed times as a limit case leading to the Laplace one. The stochastic process, which is affected by the resetting, can be Brownian motion commonly found in cells. Other possible models producing similar effects are discussed.
Collapse
Affiliation(s)
| | - Aleksander Weron
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
27
|
Eshghi I, Zidovska A, Grosberg AY. Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:69. [PMID: 37540478 DOI: 10.1140/epje/s10189-023-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
We solve a hydrodynamic model of active chromatin dynamics, within a confined geometry simulating the cell nucleus. Using both analytical and numerical methods, we describe the behavior of the chromatin polymer driven by the activity of motors having polar symmetry, both in the linear response regime as well as in the long-term, fully nonlinear regime of the flows. The introduction of a boundary induces a particular geometry in the flows of chromatin, which we describe using vector spherical harmonics, a tool which greatly simplifies both our analytical and numerical approaches. We find that the long-term behavior of this model in confinement is dominated by steady, transverse flows of chromatin which circulate around the spherical domain. These circulating flows are found to be robust to perturbations, and their characteristic size is set by the size of the domain. This gives us further insight into active chromatin dynamics in the cell nucleus, and provides a foundation for development of further, more complex models of active chromatin dynamics.
Collapse
Affiliation(s)
- Iraj Eshghi
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
| | - Alexander Y Grosberg
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA.
| |
Collapse
|
28
|
Bailey MLP, Surovtsev I, Williams JF, Yan H, Yuan T, Li K, Duseau K, Mochrie SGJ, King MC. Loops and the activity of loop extrusion factors constrain chromatin dynamics. Mol Biol Cell 2023; 34:ar78. [PMID: 37126401 PMCID: PMC10398873 DOI: 10.1091/mbc.e23-04-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
The chromosomes-DNA polymers and their binding proteins-are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living Schizosaccharomyces pombe cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops.
Collapse
Affiliation(s)
- Mary Lou P. Bailey
- Department of Applied Physics, Yale University, New Haven, CT 06511
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | - Hao Yan
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Tianyu Yuan
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Kevin Li
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Katherine Duseau
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Simon G. J. Mochrie
- Department of Applied Physics, Yale University, New Haven, CT 06511
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
| | - Megan C. King
- Integrated Graduate Program in Physics Engineering Biology, Yale University, New Haven, CT 06511
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
29
|
Marshall WF, Fung JC. Homologous chromosome recognition via nonspecific interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544427. [PMID: 37333079 PMCID: PMC10274854 DOI: 10.1101/2023.06.09.544427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In many organisms, most notably Drosophila, homologous chromosomes in somatic cells associate with each other, a phenomenon known as somatic homolog pairing. Unlike in meiosis, where homology is read out at the level of DNA sequence complementarity, somatic homolog pairing takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, presumably mediated by different proteins that bind to these different regions. Here we consider an alternative model, which we term the "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. An important component of this model is that the buttons are non-uniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a non-homolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. We investigated several types of barcodes and examined their effect on pairing fidelity. We found that high fidelity homolog recognition can be achieved by arranging chromosome pairing buttons according to an actual industrial barcode used for warehouse sorting. By simulating randomly generated non-uniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.
Collapse
|
30
|
Boardman K, Xiang S, Chatterjee F, Mbonu U, Guacci V, Koshland D. A model for Scc2p stimulation of cohesin's ATPase and its inhibition by acetylation of Smc3p. Genes Dev 2023; 37:277-290. [PMID: 37055084 PMCID: PMC10153460 DOI: 10.1101/gad.350278.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.
Collapse
Affiliation(s)
- Kevin Boardman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Siheng Xiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Fiona Chatterjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Udochi Mbonu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Illuminating the Live-Cell Dynamics of Hepatitis B Virus Covalently Closed Circular DNA Using the CRISPR-Tag System. mBio 2023; 14:e0355022. [PMID: 36840581 PMCID: PMC10128046 DOI: 10.1128/mbio.03550-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features. However, an understanding of the spatiotemporal features of cccDNA is still lacking. To achieve this, we established a system combining CRISPR-Tag and recombinant HBV minicircle technology to visualize cccDNA at single-cell level in real time. Using this system, we found that the observed recombinant cccDNA (rcccDNA) correlated quantitatively with its active transcripts when a low to medium number of foci (<20) are present, but this correlation was lost in cells harboring high copy numbers (≥20) of rcccDNA. The disruption of HBx expression seems to displace cccDNA from the dCas9-accessible region, while HBx complementation restored the number of observable cccDNA foci. This indicated regulation of cccDNA accessibility by HBx. Second, observable HBV and duck HBV (DHBV) cccDNA molecules are substantially lost during cell division, and the remaining ones were distributed randomly to daughter cells. In contrast, Kaposi's sarcoma-associated herpesvirus (KSHV)-derived episomes can be retained in a LANA (latency-associated nuclear antigen)-dependent manner. Last, the dynamics of rcccDNA episomes in nuclei displayed confined diffusion at short time scales, with directional transport over longer time scales. In conclusion, this system enables the study of physiological kinetics of cccDNA at the single-cell level. The differential accessibility of rcccDNA to dCas9 under various physiological conditions may be exploited to elucidate the complex transcriptional and epigenetic regulation of the HBV minichromosome. IMPORTANCE Understanding the formation and maintenance of HBV cccDNA has always been a central issue in the study of HBV pathobiology. However, little progress has been made due to the lack of robust assay systems and its resistance to genetic modification. Here, a live-cell imaging system by grafting CRISPR-Tag into the recombinant cccDNA was established to visualize its molecular behavior in real time. We found that the accessibility of rcccDNA to dCas9-based imaging is related to HBx-regulated mechanisms. We also confirmed the substantial loss of observable rcccDNA in one-round cell division and random distribution of the remaining molecules. Molecular dynamics analysis revealed the confined movement of the rcccDNA episome, suggesting its juxtaposition to chromatin domains. Overall, this novel system offers a unique platform to investigate the intranuclear dynamics of cccDNA within live cells.
Collapse
|
32
|
Bohrer CH, Larson DR. Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes. eLife 2023; 12:e81861. [PMID: 36790144 PMCID: PMC9984193 DOI: 10.7554/elife.81861] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are (1) single-cell chromatin tracing with super-resolution imaging in fixed cells; and (2) high-throughput labeling and imaging of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance - but not genomic distance - between genes on individual chromosomes is the major factor driving co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of [Formula: see text] for genes separated by < 400 nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes a benchmark for future experimental studies.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
33
|
Bonin K, Prasad S, Caulkins W, Holzwarth G, Baker SR, Vidi PA. Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:126501. [PMID: 36590978 PMCID: PMC9799159 DOI: 10.1117/1.jbo.27.12.126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Significance Three-dimensional (3D) imaging and object tracking is critical for medical and biological research and can be achieved by multifocal imaging with diffractive optical elements (DOEs) converting depth ( z ) information into a modification of the two-dimensional image. Physical insight into DOE designs will spur this expanding field. Aim To precisely track microscopic fluorescent objects in biological systems in 3D with a simple low-cost DOE system. Approach We designed a multiring spiral phase plate (SPP) generating a single-spot rotating point spread function (SS-RPSF) in a microscope. Our simple, analytically transparent design process uses Bessel beams to avoid rotational ambiguities and achieve a significant depth range. The SPP was inserted into the Nomarski prism slider of a standard microscope. Performance was evaluated using fluorescent beads and in live cells expressing a fluorescent chromatin marker. Results Bead localization precision was < 25 nm in the transverse dimensions and ≤ 70 nm along the axial dimension over an axial range of 6 μ m . Higher axial precision ( ≤ 50 nm ) was achieved over a shallower focal depth of 2.9 μ m . 3D diffusion constants of chromatin matched expected values. Conclusions Precise 3D localization and tracking can be achieved with a SS-RPSF SPP in a standard microscope with minor modifications.
Collapse
Affiliation(s)
- Keith Bonin
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
- Atrium Health/Wake Forest Baptist, Comprehensive Cancer Center, Winston-Salem, North Carolina, United States
| | - Sudhakar Prasad
- University of Minnesota, Department of Physics, Minneapolis, Minnesota, United States
| | - Will Caulkins
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - George Holzwarth
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - Stephen R. Baker
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - Pierre-Alexandre Vidi
- Atrium Health/Wake Forest Baptist, Comprehensive Cancer Center, Winston-Salem, North Carolina, United States
- Wake Forest School of Medicine, Department of Cancer Biology, Winston-Salem, North Carolina, United States
- Institut de Cancérologie de l’Ouest, Angers, France
| |
Collapse
|
34
|
Dubois F, Sidiropoulos N, Weischenfeldt J, Beroukhim R. Structural variations in cancer and the 3D genome. Nat Rev Cancer 2022; 22:533-546. [PMID: 35764888 PMCID: PMC10423586 DOI: 10.1038/s41568-022-00488-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Structural variations (SVs) affect more of the cancer genome than any other type of somatic genetic alteration but difficulties in detecting and interpreting them have limited our understanding. Clinical cancer sequencing also increasingly aims to detect SVs, leading to a widespread necessity to interpret their biological and clinical relevance. Recently, analyses of large whole-genome sequencing data sets revealed features that impact rates of SVs across the genome in different cancers. A striking feature has been the extent to which, in both their generation and their influence on the selective fitness of cancer cells, SVs are more specific to individual cancer types than other genetic alterations such as single-nucleotide variants. This Perspective discusses how the folding of the 3D genome, and differences in its folding across cell types, affect observed SV rates in different cancer types as well as how SVs can impact cancer cell fitness.
Collapse
Affiliation(s)
- Frank Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos Sidiropoulos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
35
|
Locatelli M, Lawrimore J, Lin H, Sanaullah S, Seitz C, Segall D, Kefer P, Salvador Moreno N, Lietz B, Anderson R, Holmes J, Yuan C, Holzwarth G, Bloom KS, Liu J, Bonin K, Vidi PA. DNA damage reduces heterogeneity and coherence of chromatin motions. Proc Natl Acad Sci U S A 2022; 119:e2205166119. [PMID: 35858349 PMCID: PMC9304018 DOI: 10.1073/pnas.2205166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
Chromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.
Collapse
Affiliation(s)
- Maëlle Locatelli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hua Lin
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
| | - Sarvath Sanaullah
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Clayton Seitz
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
| | - Dave Segall
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Paul Kefer
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Naike Salvador Moreno
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Benton Lietz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rebecca Anderson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Kerry S. Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jing Liu
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| |
Collapse
|
36
|
Ide S, Tamura S, Maeshima K. Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking. Bioessays 2022; 44:e2200043. [DOI: 10.1002/bies.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| |
Collapse
|
37
|
Navarro EJ, Marshall WF, Fung JC. Modeling cell biological features of meiotic chromosome pairing to study interlock resolution. PLoS Comput Biol 2022; 18:e1010252. [PMID: 35696428 PMCID: PMC9232156 DOI: 10.1371/journal.pcbi.1010252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
During meiosis, homologous chromosomes become associated side by side in a process known as homologous chromosome pairing. Pairing requires long range chromosome motion through a nucleus that is full of other chromosomes. It remains unclear how the cell manages to align each pair of chromosomes quickly while mitigating and resolving interlocks. Here, we use a coarse-grained molecular dynamics model to investigate how specific features of meiosis, including motor-driven telomere motion, nuclear envelope interactions, and increased nuclear size, affect the rate of pairing and the mitigation/resolution of interlocks. By creating in silico versions of three yeast strains and comparing the results of our model to experimental data, we find that a more distributed placement of pairing sites along the chromosome is necessary to replicate experimental findings. Active motion of the telomeric ends speeds up pairing only if binding sites are spread along the chromosome length. Adding a meiotic bouquet significantly speeds up pairing but does not significantly change the number of interlocks. An increase in nuclear size slows down pairing while greatly reducing the number of interlocks. Interestingly, active forces increase the number of interlocks, which raises the question: How do these interlocks resolve? Our model gives us detailed movies of interlock resolution events which we then analyze to build a step-by-step recipe for interlock resolution. In our model, interlocks must first translocate to the ends, where they are held in a quasi-stable state by a large number of paired sites on one side. To completely resolve an interlock, the telomeres of the involved chromosomes must come in close proximity so that the cooperativity of pairing coupled with random motion causes the telomeres to unwind. Together our results indicate that computational modeling of homolog pairing provides insight into the specific cell biological changes that occur during meiosis.
Collapse
Affiliation(s)
- Erik J. Navarro
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| |
Collapse
|
38
|
Brandstetter K, Zülske T, Ragoczy T, Hörl D, Guirao-Ortiz M, Steinek C, Barnes T, Stumberger G, Schwach J, Haugen E, Rynes E, Korber P, Stamatoyannopoulos JA, Leonhardt H, Wedemann G, Harz H. Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophys J 2022; 121:977-990. [PMID: 35150617 PMCID: PMC8943813 DOI: 10.1016/j.bpj.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.
Collapse
Affiliation(s)
- Katharina Brandstetter
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tobias Ragoczy
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - David Hörl
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Miguel Guirao-Ortiz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens Steinek
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Toby Barnes
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Gabriela Stumberger
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Schwach
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington
| | - Heinrich Leonhardt
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| | - Hartmann Harz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
39
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Sakaue T, Kimura A. Scaling Relationship in Chromatin as a Polymer. Results Probl Cell Differ 2022; 70:263-277. [PMID: 36348110 DOI: 10.1007/978-3-031-06573-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genomic DNA, which controls genetic information, is stored in the cell nucleus in eukaryotes. Chromatin moves dynamically in the nucleus, and this movement is closely related to the function of chromatin. However, the driving force of chromatin movement, its control mechanism, and the functional significance of movement are unclear. In addition to biochemical and genetic approaches such as identification and analysis of regulators, approaches based on the physical properties of chromatin and cell nuclei are indispensable for this understanding. In particular, the idea of polymer physics is expected to be effective. This paper introduces our efforts to combine biological experiments on chromatin kinetics with theoretical analysis based on polymer physics.
Collapse
Affiliation(s)
- Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan.
| |
Collapse
|
41
|
Caragine CM, Kanellakopoulos N, Zidovska A. Mechanical stress affects dynamics and rheology of the human genome. SOFT MATTER 2021; 18:107-116. [PMID: 34874386 DOI: 10.1039/d1sm00983d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Material properties of the genome are critical for proper cellular function - they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.
Collapse
Affiliation(s)
- Christina M Caragine
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Nikitas Kanellakopoulos
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| |
Collapse
|
42
|
Nozaki T, Chang F, Weiner B, Kleckner N. High Temporal Resolution 3D Live-Cell Imaging of Budding Yeast Meiosis Defines Discontinuous Actin/Telomere-Mediated Chromosome Motion, Correlated Nuclear Envelope Deformation and Actin Filament Dynamics. Front Cell Dev Biol 2021; 9:687132. [PMID: 34900979 PMCID: PMC8656277 DOI: 10.3389/fcell.2021.687132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Chromosome movement is prominent at mid-meiotic prophase and is proposed to enhance the efficiency and/or stringency of homolog pairing and/or to help prevent or resolve topological entanglements. Here, we combine fluorescent repressor operator system (FROS) labeling with three-dimensional (3D) live-cell imaging at high spatio-temporal resolution to define the detailed kinetics of mid-meiotic prophase motion for a single telomere-proximal locus in budding yeast. Telomere motions can be grouped into three general categories: (i) pauses, in which the telomere “jiggles in place”; (ii) rapid, straight/curvilinear motion which reflects Myo2/actin-mediated transport of the monitored telomere; and (iii) slower directional motions, most of which likely reflect indirectly promoted motion of the monitored telomere in coordination with actin-mediated motion of an unmarked telomere. These and other findings highlight the importance of dynamic assembly/disassembly of telomere/LINC/actin ensembles and also suggest important roles for nuclear envelope deformations promoted by actin-mediated telomere/LINC movement. The presented low-SNR (signal-to-noise ratio) imaging methodology provides opportunities for future exploration of homolog pairing and related phenomena.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Frederick Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
43
|
Olfactory receptor choice: a case study for gene regulation in a multi-enhancer system. Curr Opin Genet Dev 2021; 72:101-109. [PMID: 34896807 DOI: 10.1016/j.gde.2021.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
The mammalian genome possesses >2000 olfactory receptor (OR) alleles regulated by 63 known OR-Enhancer elements, yet each olfactory sensory neuron (OSN) expresses only a single OR allele. Choreographed changes to OSN nuclear architecture are evidently necessary for OR expression. Additionally, the insulated organization of OR-enhancers around an OR allele is a hallmark of the chosen OR. However, the biology guiding OR choice itself is unclear. Innovations in single-cell and biophysics-based analysis of nuclear architecture are revising previous models of the nucleus to include its dynamic and probabilistic nature. In this review, we ground current knowledge of OR gene regulation in these emerging theories to speculate on mechanisms that may give rise to diverse and singular OR expression.
Collapse
|
44
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
45
|
Chaudhary N, Im JK, Nho SH, Kim H. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques. Mol Cells 2021; 44:627-636. [PMID: 34588320 PMCID: PMC8490199 DOI: 10.14348/molcells.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.
Collapse
Affiliation(s)
- Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
46
|
Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, Wu C. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 2021; 10:e69387. [PMID: 34313223 PMCID: PMC8352589 DOI: 10.7554/elife.69387] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4-7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending 'tug-of-war' that controls a temporally shifting window of accessibility for the transcription initiation machinery.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kai Yu Li
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jonathan Snedeker
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
47
|
Itoh Y, Woods EJ, Minami K, Maeshima K, Collepardo-Guevara R. Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling? Curr Opin Struct Biol 2021; 71:123-135. [PMID: 34303931 DOI: 10.1016/j.sbi.2021.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
Chromatin in eukaryotic cells is a negatively charged long polymer consisting of DNA, histones, and various associated proteins. With its highly charged and heterogeneous nature, chromatin structure varies greatly depending on various factors (e.g. chemical modifications and protein enrichment) and the surrounding environment (e.g. cations): from a 10-nm fiber, a folded 30-nm fiber, to chromatin condensates/droplets. Recent advanced imaging has observed that chromatin exhibits a dynamic liquid-like behavior and undergoes structural variations within the cell. Current computational modeling has made it possible to reconstruct the liquid-like chromatin in the cell by dealing with a number of nucleosomes on multiscale levels and has become a powerful technique to inspect the molecular mechanisms giving rise to the observed behavior, which imaging methods cannot do on their own. Based on new findings from both imaging and modeling studies, we discuss the dynamic aspect of chromatin in living cells and its functional relevance.
Collapse
Affiliation(s)
- Yuji Itoh
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan.
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
48
|
Moretti C, Stévant I, Ghavi-Helm Y. 3D genome organisation in Drosophila. Brief Funct Genomics 2021; 19:92-100. [PMID: 31796947 DOI: 10.1093/bfgp/elz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| |
Collapse
|
49
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|